
BLens: Contrastive Captioning of Binary Functions using Ensemble Embedding

Tristan Benoit∗†¶, Yunru Wang∗†‡, Moritz Dannehl†‡, Johannes Kinder†‡

† Ludwig-Maximilians-Universität München, Germany
‡ Munich Center for Machine Learning, Germany

¶ Bundeswehr University Munich, Germany

Abstract

Function names can greatly aid human reverse engineers,
which has spurred the development of machine learning-based
approaches to predicting function names in stripped binaries.
Much current work in this area now uses transformers, apply-
ing a metaphor of machine translation from code to function
names. Still, function naming models face challenges in gen-
eralizing to projects unrelated to the training set. In this paper,
we take a completely new approach by transferring advances
in automated image captioning to the domain of binary re-
verse engineering, such that different parts of a binary function
can be associated with parts of its name. We propose BLens,
which combines multiple binary function embeddings into a
new ensemble representation, aligns it with the name repre-
sentation latent space via a contrastive learning approach, and
generates function names with a transformer architecture tai-
lored for function names. Our experiments demonstrate that
BLens significantly outperforms the state of the art. In the
usual setting of splitting per binary, we achieve an F1 score
of 0.79 compared to 0.70. In the cross-project setting, which
emphasizes generalizability, we achieve an F1 score of 0.46
compared to 0.29. Finally, in an experimental setting reducing
shared components across projects, we achieve an F1 score of
0.32 compared to 0.19.

1 Introduction

Reverse engineers analyze programs available only in binary
form in security audits, for vulnerability discovery, or dur-
ing forensic analysis of malware [2, 14, 67]. Disassemblers
such as IDA Pro or Ghidra provide assistance by discover-
ing functions within the binary and resolving data references
and control flow. Programs being analyzed have usually been
stripped of most human-readable information, such as mean-
ingful function names. Because function names help to effec-
tively navigate the code and identify points of interest, human

∗Both authors contributed equally to this work.

reverse engineers are known to manually label functions in the
disassembly with names that capture their semantics [52, 74].

Machine learning promises to help automate tasks that
require a human level of understanding, especially with im-
precise concepts such as developer-assigned names. Learned
embeddings of binary code aim to capture the semantics of as-
sembly code in a compact vector representation [17,44,51,53,
75, 76, 85]. Binary code embeddings can be used directly for
binary code similarity detection or as part of more complex
architectures and tasks.

Pioneering work on naming binary functions aims to learn
and predict complete function names [24,28,56], an approach
which is by design limited to a coarse granularity of semantics
and mostly recovers function names frequently seen in the
training data [58]. Splitting function names into sets of labels
or tokens addresses these limitations [15, 58]. However, a
multi-label setting ignores the ordering of words inside a
function name, and ordering during post-processing misses
important nuances in function names.

Recent transformer-based approaches use an encoder-
decoder architecture [72] to effectively treat function naming
as a translation problem from binary code to function names,
which are seen as sentences of tokens [15, 35, 37, 83]. A key
design choice in this line of work lies in the binary code
representation available to the encoder. For instance, AsmDe-
scriptor [37] works on assembly code, while HexT5 [83]
leverages a decompiler to work directly on pseudocode.

In this paper, we argue that translation is not the right
metaphor in function name prediction but that the task is
closer to generating meaningful captions for images [36]. In
particular, our intuition is that binary code and function names
should be treated as two modalities for the same concept.

By integrating ideas from the multimodal machine learning
field [6], we aim to obtain a solid relation between parts of
a function and words. For instance, Contrastive Language-
Image Pre-Training (CLIP) [63] consists of breaking down
images into smaller patches and then associating them with
corresponding human-readable text during pre-training. Vi-
sion transformers [19] process image patches in a way that

Published in 34th USENIX Security Symposium, Seattle, WA, USA, August 13 – 15, 2025

captures spatial relationships between them. Just as image cap-
tioning requires understanding different visual components
(e.g., colors and shapes) and their visual relationships to gener-
ate a coherent description, function name prediction involves
associating parts of binary code with function names in a
way that captures interrelationships in the binary code. These
relationships reside at the level of control and data flows, as
well as within operations, function calls, and resources, such
as strings. Still, there are differences between images and
functions that one should consider. First, it is natural to ob-
tain image patches by cutting images, but a function can be
characterized by various structures, from sequences to graphs.
Second, currently available function datasets comprise mil-
lions of functions at most, while image datasets comprise
billions of images [91]. Third, while results for function nam-
ing published so far are promising, they still do not generalize
well across separate projects, as we explain below.

Distribution shifts. Most work in learning-based binary
analysis adopts the cross-binary setting, where functions in
the training, validation, and test sets are drawn from distinct
binaries. Xiong et al. [83] argue that the cross-project set-
ting, where an entire project is assigned to a single set, better
reflects real-world use cases, as reverse engineers typically
encounter binaries from unknown projects. This setting is
difficult for learning-based methods as it demands better gen-
eralization capability from models. Binary code within the
same project tends to have similar distributions due to shared
components, coding practices, and compilation configurations,
which may lead to overfitting. Consequently, accuracy drops
significantly in the cross-project setting, as the training and
test sets exhibit substantial distribution differences, referred
to as distribution shifts. While different projects may still
share individual source code components or snippets, this is
expected even in real-world scenarios. However, to evaluate
solely generalization capabilities, we additionally introduce
a strict evaluation setting (§6.4), in which we aggressively
minimize the impact of shared components across projects.

Challenges. We identify the following challenges to func-
tion name prediction on stripped binary code: (C1) Function
names often encapsulate semantics sensitive to the order of
words (e.g., int_to_float). It is thus important to capture
word order through the binary code structure. (C2) Both pre-
cision and recall are crucial for providing useful function
names. A good precision guarantees that suggested names are
relevant and not misleading, while a good recall ensures the
model proposes names for most functions. Achieving a satis-
factory amount of both is challenging. (C3) Ensuring robust
generalization is critical to the more challenging cross-project
setting. Yet existing approaches are seldom evaluated in this
realistic setting [15, 24, 28, 35, 56, 58].

Our approach. We introduce BLens (Binary Lens), which
aligns the modality of binary code—represented as function
patches—with human-readable text through the contrastive
captioning (CoCa) [88] multi-task. To obtain these patches,

BLens leverages state-of-the-art embeddings: CLAP [75] for
a cross-modal function embedding, PALMTREE [44] to rep-
resent sequences of basic blocks, and DEXTER [58] for a
context-aware function embedding. Because multi-task mod-
els are robust [8] but suffer from conflicts among training
objectives [65], we fine-tune BLens’s decoder strictly for cap-
tioning. In order to handle rather small datasets and short
function names, the decoder learns through a Masked Lan-
guage Modeling (MLM) task [16] tailored to function names,
and to maintain precision, it employs a confidence threshold.
In particular, we make the following contributions:

• We present BLens, a new approach to function name pre-
diction inspired by multimodal machine learning (§2).
Our architecture integrates multiple existing binary code
representations thanks to the COMBO (COntrastive
Multi-modal Binary embedding Optimizer) pre-training
phase (§4) to achieve better generalization.

• We introduce LORD (Likelihood Ordered Regressive
Decoder) (§5), a decoder and inference scheme that em-
ploys a hard MLM task for a more profound fine-tuning
process along with a flexible autoregression. LORD main-
tains consistently high precision even in the challenging
cross-project setting.

• BLens achieves substantial improvements over the state
of the art, particularly on the grammatical structure. In an
evaluation in the cross-binary setting (§6.2), we observe
gains of 12% F1, 32.6% RougeL, 79.1% Bleu, and 11.1%
VarCLR scores. In the cross-project setting (§6.3), we
observe gains of 42.2% F1, 71.7% RougeL, 188% Bleu,
and 12.1% VarCLR scores. In the strict setting, which re-
moves shared components (§6.4), BLens provides a gain
of 53.3% in terms of F1 score. An ablation study (§6.5)
validates our contributions by demonstrating a 55% in-
crease in F1 score from the COMBO pre-training and a
56.2% boost in precision from the LORD decoder.

Additionally, a case study of predictions in the cross-project
setting (§7) illustrates BLens’s capacity to generate relevant
function names that may differ from the ground truth, thereby
addressing the lower F1 score in this hard setting.

BLens, along with all experimental data, is available as
open source [7].

2 Multimodal Machine Learning

This section introduces two approaches from multimodal ma-
chine learning for image captioning, CoCa [88] and GIT [77],
which form the foundation of BLens. As both are built around
the transformer [72] as their core component, we begin by
recalling its technical details.

Transformer. The transformer [72] has recently found
widespread application in binary analysis [3, 35, 44, 59–61,

2

print_error_info
print

get_line
...

Function
Names

Function
Encoder

get_cmd_line
set_clock
new_array

...

Function
Name

Application

Ensemble
Encoder

get_error_msg
printHexStrings

getline
...

Function
Names

(get, error, msg)
(print, hex, string)

(get, line)
...

Word
Sequences

Text
TokensFunction

Name
Tokenizer

Unimodal
Text Encoder

Multimodal
Text

Decoder

print_error_info
print

get_line
...

Function
Names

Function
Patches

DEXTER CLAP PalmTree
Function
Encoder

Function
Tokens

COMBO

Ensemble
Encoder

Function
Patches

Function
Tokens

LORD

cross attention

caption
 loss

caption
 loss

weights

contrastive loss

ProjectA

ProjectN

...

BinaryB1
...

BinaryN1
...

FunctionA11

FunctionA1m

...

FunctionB11

FunctionB1n

...

FunctionN11

FunctionN1k

...

...

Training Set

Test Set

BinaryA1

...

ProjectB

ProjectM

...

BinaryM1
...

FunctionM11

FunctionM1k

...

...
Val Set

Function
Name Decoder

MLM

Flexible
Autoregression

Function
Name

Decoder
+

Training
Datasets

Figure 1: Overview of BLens. Inspired by CoCa [88] and GIT [77], BLens employs a two-stage process: pre-training (blue
arrows) and fine-tuning (red arrows). In pre-training, we initialize function tokens using an ensemble encoder and pre-train the
function encoder with a contrastive captioning task. During fine-tuning, the pre-trained encoder, combined with a function name
decoder trained with a new MLM task, generates function names. In inference (green arrows), the model takes functions as input
and outputs their corresponding names with the flexible autoregression.

76, 89, 94, 97], demonstrating its effectiveness in learning bi-
nary representations. It consists of an encoder and a decoder,
each with several stacked blocks. The main components of en-
coder (and decoder) blocks are multi-head attention, residual
connections [29], and layer normalization [4]. Multiple atten-
tion heads perform self-attention independently, allowing the
model to capture a wider range of dependencies by attend-
ing to different aspects of the input sequence simultaneously.
Residual connections, implemented by adding the layer input
directly to its output, help maintain gradient flow and prevent
degradation in deep networks. Layer normalization, which
operates by normalizing the summed inputs across each neu-
ron before applying activation, ensures consistent activation
values and stabilizes training.

CoCa. CoCa [88] includes an image encoder, a unimodal
text decoder, and a multimodal text decoder. The image en-
coder processes image patches, while the uni- and multimodal
decoders form the two halves of a transformer decoder. The
unimodal decoder encodes text using masked self-attention,
and the multimodal decoder combines the outputs of the uni-
modal decoder and the image encoder with cross-attention
to create image-text representations. The objective of CoCa
combines contrastive and captioning losses. The contrastive
loss aligns text and image tokens in the same latent space,
while the captioning loss is a generative loss derived from
predicting captions.

GIT. Compared to CoCa, GIT [77] is a simpler generative
model for image/video captioning, comprising only one image

encoder and a text decoder. It concatenates image tokens with
text tokens as input to the transformer module and predicts
the associated description for the input image. Notably, GIT
employs an existing encoder pre-trained with a contrastive pre-
training task [90] as the image encoder, similar to how we pre-
train a function encoder based on the contrastive captioning
(CoCa) task.

3 Overview

Now, we first define the problem and then introduce the train-
ing and application process of our model.

Problem Definition. Function name prediction automat-
ically recovers function names from stripped binary code.
Formally, the process of recovering function names from func-
tions is defined as

Namei = G(F p,b
i)

where F p,b
i represents the i-th function extracted from binary

b in project p, G denotes our model, Namei is the ground
truth name for F p,b

i . The input of the model is a function,
encompassing related code, data flow, control flow, and other
features. The output of the model is a sequence of words

ˆNamei ∈ Vocabn where Vocab is the set of words from the
vocabulary and n is the sequence length. The effectiveness of
the model is judged based on how closely its output aligns
with the ground truth.

3

Terminology. We draw inspiration from standard terms
used in image captioning tasks to denote intermediate outputs.
Similar to how image patches are inputs to the image encoder,
we refer to the inputs of the function encoder as function
patches. Moreover, the outputs of encoders are termed tokens.
Finally, each token is a vector of fixed dimensionality d.

Training stages. Training consists of a pre-training phase
followed by a fine-tuning phase. During pre-training, COMBO
learns robust function representations (with blue arrows in
Figure 1) with a contrastive captioning task. During fine-
tuning, the new decoder LORD is added on top of the pre-
trained function encoder to generate function names (with red
arrows in Figure 1). Throughout the entire training process,
all weights are updated.

COMBO. Firstly, given F p,b
i as input, the ensemble encoder

embeds processed function features with three state-of-the-art
embeddings and then generates function patches. Secondly,
the tokenizer turns the ground truth name into the sequence of
words Namei that the unimodal text encoder converts into text
tokens. Simultaneously, the function encoder transforms the
function patches into function tokens. There, a contrastive task
relates the outputs of both encoders. Thirdly, a multimodal
text decoder integrated on top of both encoders generates mul-
timodal text tokens. Lastly, a captioning task relates Namei
to these tokens. Details are provided in §4.

Previous contrastive pre-trainings on functions [75, 95] do
not combine contrastive and captioning losses, missing out
on the advantages of a multi-task approach [8]. Additionally,
they require robust summaries generated by LLMs as anchors,
which are challenging to obtain [26]. In contrast, we directly
learn text tokens as anchors through the unimodal text en-
coder.

LORD. Training on multiple tasks introduces conflicts [65].
Therefore, we introduce a fine-tuning stage with a function
name decoder, LORD, that is strictly focused on captioning
through a novel Masked Language Modeling (MLM) task.
This task replaces the standard teacher forcing in transformers
with predicting randomly selected words from the remain-
ing context. Additionally, during application, the task allows
LORD to employ a flexible autoregression process, which
picks probable words one step at a time. The flexible autore-
gression stops when the confidence scores of the proposed
words fall below a fine-tuned threshold. The details are shown
in §5.

Application. In Figure 1, the dashed box and green arrows
at the bottom illustrate the actual application of the model.
Given F p,b

i as input, the ensemble encoder begins by embed-
ding processed function features with three state-of-the-art
embeddings. Then, it generates function patches from the
initial embeddings. Moreover, these patches are then trans-
formed into function tokens by the function encoder. Finally,
following the flexible autoregression process, the function
name decoder generates text tokens one at a time, which are
then converted into a word sequence, resulting in ˆNamei.

function-level embedding

control
flow

assembly

CLAP

PALM
TREE

sequential
embeddings M

L
P

function
patches

M
L
P

+

functions

data flow

DEXTER

function
patchesM

L
P

PosEnc+

function
patches

PosEnc

single
embeddings

function
patches

basic block-level embedding

single
embeddings

+

PosEnc

cut

cut

cut

Figure 2: Overview of the ensemble encoder.

By using the idea of image captioning, we capture the word
order through the binary code structure, addressing challenge
C1. With COMBO, we aim to address distribution shifts, men-
tioned in challenge C3, by associating function parts with sim-
ilar semantics to corresponding words in names. The LORD
task and autoregressive process significantly boost precision
(see §6.5.3), which is key to challenge C2.

4 COMBO

We now present COMBO in detail. With stripped binaries as
input, the ensemble encoder outputs function patches using
existing SotA approaches (§4.1). By utilizing these existing
models instead of building a custom binary representation
model, we can leverage the diverse binary features extracted
by different models, thereby enriching the representation and
enhancing robustness. Next, we refine the function patches
with a contrastive captioning task (§4.2), which links function
tokens to corresponding text tokens. The robust semantic
understanding of COMBO mitigates distribution shifts [84].

4.1 Ensemble Encoding
To better represent functions, BLens leverages knowledge
from existing binary representation models instead of training
new ones from scratch. Different models use distinct binary
pre-processing techniques and extract unique features from
functions. Thus, selecting suitable combinations is crucial to
avoid redundancy and ensure complementary features.

We categorized state-of-the-art binary representation mod-
els by the granularity of their embeddings. Some approaches
generate embeddings at the basic block level, while others
produce a single embedding for an entire function. Based
on the differences in embedding granularity, extracted bi-
nary features, accessibility, and performance, we selected
PALMTREE [44], CLAP [75], and DEXTER [58]. Although
we focused on these three models, our module can be applied
to various embedding approaches.

4

For basic block embeddings, we select PALMTREE [44],
a pre-trained BERT-based [16] assembly language model.
It generates instruction embeddings through self-supervised
learning incorporating both data-flow and control-flow infor-
mation, allowing for straightforward extraction of basic block
embeddings. For function-level embeddings, we select CLAP
and DEXTER. CLAP [75] is the best-performing approach we
have identified in our experiments, effectively aligning func-
tion code with descriptive text. DEXTER [58] employs static
analysis to extract both quantitative (e.g., number of transi-
tively reachable functions) and categorical features (e.g., Min-
Hash hashes of assembly opcodes) from functions and uses
MLP layers to integrate these features and produce function
embeddings. Compared to most methods that use learning-
based tasks to capture binary features, DEXTER employs com-
plex static analysis. It is also one of the best-performing binary
embeddings for function name prediction. The three models
have distinct focuses: PALMTREE emphasizes control flow
and data flow dependencies among assembly instructions,
CLAP incorporates source code information, and DEXTER
focuses on statistical features.

Our attention mechanism requires many input patches
to discern relationships effectively. While images, videos,
and speeches can easily be cut into a sequence [10, 19, 42],
this is not the case for function-level embeddings. A
projection [22, 43, 73] either fails to produce enough patches
or requires so many parameters that it dilutes the effectiveness
of the attention mechanism. To effectively combine these em-
beddings, we use neural networks structured as in Figure 2,
where PosEnc stands for the positional encoding. For function-
level embeddings, we apply the concept of image patches,
cutting embeddings into smaller embeddings and projecting
them to function patches by an MLP layer. For basic block-
level embeddings, an MLP layer projects them to patches.
Learnable positional encodings are then added to each patch.
Notably, after a function-level embedding has been turned
into patches, the positional encoding of each patch indicates
which part of the original embedding it contains. Finally, all
patches are concatenated for joint training on the contrastive
captioning task during pre-training.

4.2 Contrastive Captioning

Function name captioning can also serve as a pre-training
task, as in CoCa [88]. Contrastive captioning is the backbone
of our robust modality translation from binary code to text. In
this section, we outline the detailed process of the contrastive
captioning task.

Inspired by CoCa, we use a unimodal text encoder to en-
code words into text tokens and a function encoder to generate
function tokens. By applying contrastive loss, we align the
text tokens with function tokens. Additionally, we add a mul-
timodal text decoder on top of the dual encoders to perform
the captioning task, further enhancing the ability of the model

contrastive
loss

Unimodal
Text Encoder

...
Transformer Block

Function Encoder

...

Multimodal
Text Decoder

Transformer
Block

Cross
Attention

Layers

Cross Attention Layers

MLP

MLP
M
L
P

func name
caption
loss

[CLS]

[Co]

Transformer Block

Cross Attention Layers

Figure 3: Overview of the contrastive captioning task.

to generate accurate and relevant function names.
The structures of the encoders and the decoder are shown

in Figure 3. In the dual-encoder setup, given a function and
its name, the name is first tokenized into words and then em-
bedded into n+1 initial text tokens, where n is the maximum
number of words in a name (padded if fewer), and the +1
accounts for the addition of a [CLS] token at the end of each
token sequence. These initial text tokens serve as the input
for the unimodal text encoder, which produces unimodal text
tokens through transformer blocks.

For the function encoder, the function is first transformed
into k1 function patches of dimension d using the ensem-
ble encoder. Remember that d is also the dimension of each
token. Function patches are then passed as input to the func-
tion encoder, which outputs k2 function tokens through cross-
attention with k2 learnable queries. Among these function
tokens, one is reserved for the contrastive task, referred to
as the contrastive token, while others are reserved for the
captioning task.

The contrastive task operates over a batch of B functions
and names; it consists of aligning [CLS] text tokens CLS with
corresponding contrastive tokens Co:

LCross-Entropy(x,y) =− 1
B

B

∑
i=1

log
exp(xTi yi/σ)

∑
B
j=1 exp(xTi y j/σ)

LContrastive =LCross-Entropy(CLS,Co)+LCross-Entropy(Co,CLS)

Here, i and j are indices for functions and names in the
i-th and j-th pairs, while σ is the temperature used to scale
the logits. LContrastive is the sum of function-to-name cross-
entropy and name-to-function cross-entropy. This approach
minimizes the distance between xi and yi while maximizing
the distance between xi and y j. Such alignment ensures that
the function and text tokens in each pair remain in the same
latent space.

The captioning loss uses function tokens, excluding the
contrastive one, and unimodal text tokens, excluding [CLS].

As shown in Figure 3, we first connect the multimodal text
decoder to the unimodal text encoder, and then link the multi-
modal text decoder to the function encoder via cross-attention

5

layers. As a result, the multimodal text decoder can lever-
age information from both the unimodal text encoder and the
function encoder. Thus, during backpropagation, the weights
of both encoders are updated accordingly. The output of the
multimodal decoder is function names, as word sequences,
and the loss function is the standard cross-entropy loss for
generation tasks.

Given ground truth words Name and multimodal text to-
kens MMTTokens, the caption loss is as follows:

LCaption =−
n

∑
t=1

logPθ(Namet | Name<t ,MMTTokens)

Here, Namet is the ground truth word at time step t and
Name<t denotes previous words up to time step t − 1.
Pθ(Namet | Name<t ,MMT Tokens) is the predicted probabil-
ity of Namet given Name<t and MMTTokens.

The full loss function of the training process is as follows:

LFull = LContrastive +LCaption

After COMBO, the function encoder can project function to-
kens into a latent space closely aligned with that generated by
the unimodal text encoder. This alignment opens possibilities
for zero-shot function-text retrieval [75].

The multimodal text decoder can already generate impre-
cise function names. However, pre-trained models perform
best when fine-tuned only on their downstream task, which
is why CoCa is fine-tuned on only the captioning task [88].
Consequently, we fine-tune the pre-trained model on function
name prediction inspired by the encoder-decoder structure in
GIT [77]. Along the way, we propose a new decoder, LORD,
that is more appropriate for function name prediction.

5 LORD

An important challenge in function name prediction is achiev-
ing an optimal balance between recall and precision. Specifi-
cally, it is crucial to prevent overwhelming a reverse engineer
with excessive false positives, which are time-consuming to
verify. Preliminary work [87] indicates that traditional trans-
former approaches tend to be overconfident, prioritizing recall
excessively. This issue is common to modern neural networks,
especially in the face of distribution shifts [40, 80]. This bias
is acceptable in problems such as translation and image cap-
tioning, where errors are easily noticeable and distribution
shifts are small. However, in binary analysis, a transformer
should maintain precision by being more cautious.

We propose LORD, a new decoder and inference scheme pa-
rameterized by a confidence threshold. The embedding layer
of this decoder is initialized with weights from the unimodal
text encoder. To deepen semantic understanding, we introduce
a new Masked Language Modeling (MLM) task (detailed in
§5.1), inspired by BERT [16], to replace left-to-right teacher

array int int eosget eos

hex to int eosconvert pad

0.28 0.29 0.35 0.160.26

array int int eosget eos
0.28 0.29 0.35

hex to int valueget eos
0.46 0.38 0.20

hex to int valueconvert eos
0.530.33

hex to int valueconvert eos
0.19

hex to int valueconvert eos

Ground
Truth

LORD
Inference
Scheme 0.48

0.160.26

0.22

0.17

0.33

0.25

hex to int padconvert eos

lower than
threshold, stop here

1

2

3

4

5

6

Figure 4: A toy example of the flexible autoregressive process.

forcing. During inference, we use a more precise autoregres-
sive process referred to as flexible autoregression. It selects
the word with the highest confidence score at each step un-
til the score falls below the threshold. Details are provided
in §5.2.

5.1 Masked Language Modeling
During training, a traditional generative transformer learns
through teacher forcing [38]. Each word is predicted with
access to the preceding words as context. During inference,
autoregression predicts words sequentially from left to right
until the [EOS] word is reached. This approach is valid be-
cause, with enough transformer blocks, autoregression can
express any sequence distribution. However, teacher forcing
simplifies the prediction of later words compared to the first
word and can fail planning tasks [5].

We propose a new MLM task to replace teacher forcing.
We train the decoder to predict masked words given unmasked
ones. This allows for more possibilities of masking and helps
to mitigate the issue of short function names. Additionally,
this lets the decoder learn deeper insights into the relationship
between function names and binary code.

In line with the traditional transformer, where the context
(previous words) never includes [EOS] and [PAD] words, we
consistently mask these words. However, traditional MLM
tasks randomly mask 15% of words within a long text cor-
pus [81], yet function names are typically short, often con-
sisting of three to five words. A 15% masking rate results

6

in a task of unmasking too few tokens. Consequently, we
need to mask a higher proportion of words. We follow the
intuition that the number of words and the number of masked
words should be related. While we want to focus on challeng-
ing cases, we must also create contexts containing nearly all
words since such context will occur during inference. For a
function name with n words, we define the number of masked
words, from 0 to n, as a random variable M, which follows
the discrete probability distribution Softmax(C), where C is
a vector of dimension n+1 with Ci = 1+ i/n. In our MLM
task, M words are thus masked randomly among all possible
subsets.

For instance, consider the four-word function name
convert_hex_to_int. The number of masked words
M follows the distribution Softmax([1,1.25,1.5,1.75,2]) ≈
[0.114,0.147,0.188,0.241,0.310]. The formula ensures that
masking all words is the most probable event but maintains
a decent probability of masking a few words. If two words
happen to be masked, then a subtask could be to recover
convert_hex_to_int from [M]_hex_[M]_int given func-
tion tokens described in §4 as extra context.

5.2 Flexible Autoregression
LORD is not limited to left-to-right inference. It could decode
the function name in one step [54, 62]. However, decoding
the whole name in one step introduces difficulties in inferring
relations between words, as the decoder better approximates
the conditional distribution of a word given context [64]. As
the example shows in Figure 4, the decoder might initially
predict int for both positions 2 and 3. However, once int
is placed at position 3, the likelihood of int also being at
position 2 becomes very low.

Hence, we introduce a new autoregressive process called
the flexible autoregression. It starts with an initial prediction
containing only masked words. At each inference step, it runs
our decoder on the current prediction.1 The decoder estimates
the possible words at each masked position. The autoregres-
sion picks the word w with the overall highest confidence
score (probability) at any given position. It stops if that confi-
dence score is smaller than the confidence threshold T or if all
words are unmasked. Otherwise, it replaces the corresponding
masked word with the word w, and it continues. The confi-
dence threshold T is a parameter to flexible autoregression
for addressing distribution shifts between the training and test
sets, thereby improving the precision. We select the threshold
that achieves the best F1 score on the validation set.

We give a toy example of the process in Figure 4. It first
infers the [EOS] word; as explained before this special word is
masked from the decoder context. It continues by positioning
the int word in the fourth position because the confidence
score at the third position is lower (0.29 vs 0.35), leaving

1Because [EOS] words are never part of the context during our MLM
task, we have to mask them from the decoder.

some positions for earlier words. Then, it notices an array that
contains, in fact, a hexadecimal number, so it adds the hex
word at the second position. It concludes correctly that the
function is a conversion from a hexadecimal number to an
integer by correctly placing the preposition to and the verb
convert in two steps.

6 Evaluation

In this section, we evaluate BLens comprehensively. In §6.1,
we describe the evaluation methodology, including the dataset,
metrics for function name prediction, and competitors. With
this methodology, we evaluate BLens in the cross-binary set-
ting (§6.2) and the cross-project setting (§6.3). In both set-
tings, we investigate whether BLens outperforms competitors
and analyze BLens predictions. Furthermore, we introduce a
strict setting that removes shared components across projects
to evaluate generalization capabilities (§6.4). We perform an
ablation study on BLens to validate our contributions against
other design choices (§6.5). The discussion in §7 indicates
that, in the challenging cross-project setting, BLens’s pre-
dicted function names can be meaningful even if different
from the ground truth.

6.1 Methodology

Dataset. We use the Punstrip [56] dataset, as does XFL [58].
It contains 741,724 functions originating from 10,047 C bi-
naries extracted from more than three thousand Debian pack-
ages2, which have been pre-compiled with different compilers
and compiler versions. Following previous work [56, 58], we
exclude empty functions, overlapping functions, and locally
bound symbols, and we use the ELF symbol table to obtain
function names.

Tokenizer. To predict words in function names, we first
have to transform function names into sequences of words.
We use the tokenizer by Patrick-Evans et al. [58], which as-
sembles a vocabulary of 1024 words, along with a set of words
for each function name. We wrote a recursive version of the
tokenizer algorithm to produce sequences instead of sets.

Settings. We adopt the two settings defined by Xiong et
al. [83]: the cross-project setting and the cross-binary setting,
to understand both practical performance and the model’s
generalization capability. In both settings, we split functions
into training, validation, and test sets, which comprise approx-
imately 80%, 10%, and 10% of the total dataset, respectively.
In the cross-project setting, an entire project is allocated to
one of the sets, ensuring that functions from the same project
belong to the same set. In the cross-binary setting, we only
ensure that functions from the same binary file belong to the
same set. The cross-project setting is more realistic since,

2For simplicity, we refer to packages as projects in this paper.

7

in most use cases, a reverse engineer is working on an un-
seen project. However, even different projects may reuse code
from certain APIs, design patterns, and templates, which is
also expected in a real-world deployment of function name
prediction. To specifically evaluate generalization abilities,
we define the strict setting on top of the cross-project setting,
which removes potential shared components across projects.

Pre-processing. As explained in §4, BLens employs two
function embeddings, DEXTER [58] and CLAP [75], plus one
basic block embedding, PALMTREE [44]. All embeddings
employ their own pre-processing, tied to specific disassem-
blers. DEXTER uses the radare2 [71] (v2-5.5.4) disassem-
bler. Because it relies heavily on vocabularies extracted from
the training set (e.g., external calls, operations), we had to
train distinct DEXTER models for the cross-binary and cross-
project settings. Note that DEXTER reads function boundaries
from the symbol table because it considers recovering func-
tion boundaries from stripped binary code an orthogonal task.
To obtain CLAP and PALMTREE embeddings, we employ
pre-trained models from their authors. We use IDA Pro (v7.6)
as a disassembler to obtain CLAP function embeddings. Like-
wise, we compute PALMTREE instruction embeddings with
angr [66] (v9.2.93) as a disassembler. We average the instruc-
tion embeddings of each basic block to obtain sequences of
basic block embeddings for each function.

Metrics. Let us define the list of predicted function
names X̂1, . . . , X̂B and the list of ground truth function names
X1, . . . ,XB. Metrics commonly used for function name pre-
diction consider X̂i as a set of words {x̂1, . . . , x̂ j}, while the
ground truth Xi is another set {x1, . . . ,xk}. True positives for
the i th function (TPi), false positives (FPi), and false nega-
tives (FNi) are defined as:

TPi = |{x̂i}∩{xi}|,FPi = |{x̂i}\{xi}|,FNi = |{xi}\{x̂i}|

Because it gives equal weight to each word, we adopt the
micro-average definition of the precision P and recall R:

P =
∑

N
i=1 TPi

∑
N
i=1(TPi +FPi)

, R =
∑

N
i=1 TPi

∑
N
i=1(TPi +FNi)

Recall is fundamental to offer a decent number of predic-
tions. Moreover, precision is equally crucial in our context,
since false positives can only be discovered after complex
human analysis of assembly code. Hence, a good balance
between recall and precision is necessary for function name
prediction. The F1 score measures this balance by the har-
monic mean of precision and recall.

Word order metrics. Nevertheless, F1 does not consider
the order of words or any repetitions of words in the ground
truth. Therefore, we also consider two classical metrics for
image captioning and translation that operate on n-grams.
The first metric, ROUGE-L [49], referred to as RougeL in
this paper, measures the longest common subsequences and
thus places a greater emphasis on recall. The second metric,

the smoothed version of BLEU-4 [50], referred to as Bleu
in this paper, focuses on n-gram precision scores. Despite
the application of a brevity penalty, in the end, it remains a
precision metric. Therefore, although these metrics are crucial
for capturing word order, F1 still remains the primary metric
of function name prediction.

Embedding metrics. As an alternative to classical met-
rics, embedding-based metrics, such as BERTSCORE [93]
and VarCLR [12], promise to measure semantic similarity be-
tween predictions and ground truth with the distance between
their embeddings. In our evaluation, we include measure-
ments of VarCLR, as it is trained on software and designed
for variable names. However, it comes with inherent limita-
tions (at times, counter-intuitive judgments and issues with
empty predictions; see §7), which is why we emphasize the
need for F1 as a robust performance metric.

Free functions. To accurately simulate a real-world sce-
nario, twenty functions that can be inferred automatically
by static analysis (e.g., csu_init) are treated as perfectly
predicted in the cross-binary and cross-project settings. This
function list is adopted from Patrick-Evans et al.’s evaluation
of XFL [57] and reported in Appendix A.

Implementation. BLens is implemented in Pytorch and
utilizes parts of CoCa and GIT implementations. All experi-
ments were run in two weeks on a server with access to one
terabyte of main memory and four NVIDIA H100 GPUs, each
with 80GB of VRAM. The BLens transformer architecture
features a token dimension d of 768 and a batch size of 512.
The number of function patches k1 and image tokens k2 are
82 and 64, respectively. Function names consist of up to 20
words. BLens transformer blocks use multi-head attention lay-
ers with 32 heads of dimension 24. The large number of heads
is effective for handling multiple embeddings, while the rela-
tively low dimension helps avoid overfitting. The pre-trained
model contains 153 million learnable parameters, decreasing
to 138 million following fine-tuning. Further implementation
details are documented in our artifact [7].

Training. Both the pre-training and fine-tuning phases last
200 epochs. Every 10 epochs during fine-tuning, confidence
thresholds are evaluated to find the optimal threshold accord-
ing to the F1 score on the validation set. The model is then
saved along with its threshold. In the ablation study, each
phase has 80 epochs, and we obtain a confidence threshold as
well as a model every 4 epochs. Eventually, the best model on
the validation set is evaluated over the test set using the cor-
responding confidence threshold. The confidence threshold
turned out to be 0.194 for the cross-project setting and 0.398
for the cross-binary setting.

Competitors. We consider three main competitors for
the function name prediction task. AsmDepictor by Kim et
al. [37] translates instruction sequences to function names
with a transformer. SymLM by Jin et al. [35] is a transformer
that considers both the target function and the function calling
context. External calls are embedded, while internal functions

8

Model F1 RougeL Bleu VarCLR

BLens 0.772 0.699 0.582 0.819
XFL 0.625 0.527 0.325 0.720

BL-S 0.789 0.689 0.652 0.817
SymLM 0.704 0.472 0.107 0.736

BL-A 0.763 0.693 0.596 0.819
AsmDep. 0.407 0.432 0.279 0.649

Table 1: Results in the cross-binary setting. BL-A and BL-S
are variants trained on functions obtained from SymLM and
AsmDepictor pre-processing.

are represented by Trex embeddings [60]. XFL by Patrick-
Evans et al. [58] predicts word sets with PFastreXML [32]
and DEXTER before ordering them with an n-gram model.

Adaptation. Our competitors use different function name
tokenizers; thus, we adapted each to work with our tokenizer
and trained them in both the cross-binary and cross-project
settings for a fair comparison. With their pre-processing phase,
BLens and XFL gathered 436,941 functions, while SymLM
and AsmDepictor gathered 232,393 and 318,372 functions,
respectively. Due to these differences, we had to train specific
versions of BLens on SymLM and AsmDepictor datasets for
both the cross-binary and cross-project settings. We call the
first model BL-S and the second BL-A.

HexT5. HexT5 [83] is also an interesting competitor; how-
ever, the source code for the learning phase and data process-
ing is not available. Therefore, we could only reimplement
the binary processing step based on the provided input exam-
ples and use the pre-trained model. This model uses a vastly
different tokenizer. Consequently, we conduct a qualitative
evaluation of HexT5, which is discussed further in §7.

6.2 Cross-Binary Setting

Results in the cross-binary setting are summarized in Table 1.
BLens outperforms XFL by 23.5%, 32.6%, 79.1%, and 13.7%
in terms of F1, RougeL, Bleu, and VarCLR scores, respec-
tively. BL-S outperforms SymLM by 12%, 45.9%, 507%, and
11.1% in terms of F1, RougeL, Bleu, and VarCLR scores, re-
spectively. BL-A outperforms AsmDepictor by 87.7%, 60.5%,
113%, and 26.1% in terms of F1, RougeL, Bleu, and VarCLR
scores, respectively. BLens obtains significantly better met-
rics, especially RougeL and Bleu scores. Moreover, BLens
achieves an F1 score of 0.772 due to a high precision of
0.917 and a good recall of 0.666. BLens RougeL, Bleu, and
VarCLR scores are 0.699, 0.582, and 0.819, which suggest a
good capacity to recover subtle grammar details and produce
meaningful names.

In Table 2, we report the most predicted words of BLens in
the cross-binary setting, along with their precisions, recalls,

Word Occurrences Prec. Recall F1

ocaml 1852 0.983 0.990 0.987
get 1350 0.864 0.740 0.797
set 687 0.880 0.702 0.781
string 683 0.898 0.783 0.836
2 550 0.815 0.867 0.840
4 418 0.995 0.965 0.980
fun 403 0.681 0.492 0.571
parse 378 0.902 0.595 0.717
to 365 0.868 0.660 0.750
read 362 0.881 0.709 0.786
print 361 0.842 0.738 0.787
initialise 360 0.806 0.613 0.696
reiser 351 0.997 0.989 0.993
list 340 0.888 0.572 0.696
free 326 0.920 0.837 0.876
is 317 0.840 0.698 0.762
buffer 314 0.932 0.722 0.814
lwt 273 0.996 0.424 0.595
name 252 0.896 0.677 0.771
integer 250 0.887 0.779 0.830

Table 2: Top 20 predicted words in the cross-binary setting.
Functions given for free (described in §6.1) are discarded.

and F1 scores. Note that functions given for free (described
in §6.1) are discarded from scores. Note further that BLens is
nearly perfect at predicting words specific to ocaml and cer-
tain libraries, such as reiser. These words occur as prefixes
in many functions and are straightforward to recover: OCaml
code has distinct patterns, and ReiserFS-specific functions
are prefixed by reiser4, which is part of the reason we also
achieve a very high score on the word 4. Moreover, some stan-
dard OCaml functions are present in multiple binaries, and
ReiserFS functions are shared across three binaries (prefixes
and code sharing are specifically addressed in §6.4).

BLens also achieves good results on other words. For in-
stance, on get and set, which are common general-purpose
terms, BLens attains F1 scores of 0.797 and 0.781, respec-
tively. On words related to strings and input/output operations,
such as string, parse, read, and print, BLens achieves F1
scores of 0.836, 0.717, 0.786, and 0.787, respectively. Finally,
on words related to low-level operations such as initialise,
free, list, and buffer, BLens achieves F1 scores of 0.696,
0.876, 0.696, and 0.814, respectively.

Conclusion. In the cross-binary setting, BLens achieves a
notable F1 score of 0.771, with a critical precision of 0.917.
Thanks to our contributions, BLens captures word order,
domain-specific words, and general-purpose words, improv-
ing the state of the art by 12% on F1, 32.6% on RougeL,
79.1% on Bleu, and 11.1% on VarCLR scores.

9

Model F1 RougeL Bleu VarCLR

BLens 0.460 0.393 0.242 0.648
XFL 0.295 0.222 0.025 0.560

BL-S 0.394 0.294 0.221 0.599
SymLM 0.277 0.171 0.023 0.534

BL-A 0.455 0.399 0.258 0.652
AsmDep. 0.200 0.220 0.089 0.520

Table 3: Results in the cross-project setting.

6.3 Cross-Project Setting

Results in the cross-project setting are summarized in Ta-
ble 3. BLens outperforms XFL by 55.7%, 76.7%, 887%, and
15.9% in terms of F1, RougeL, Bleu, and VarCLR scores,
respectively. BL-S outperforms SymLM by 42.2%, 71.7%,
855%, and 12.1% in terms of F1, RougeL, Bleu, and Var-
CLR scores, respectively. BL-A outperforms AsmDepictor
by 128%, 81.1%, 188%, and 25.3% in terms of F1, RougeL,
Bleu, and VarCLR scores, respectively.

Again, BLens achieves significantly better metrics, espe-
cially F1, RougeL, and Bleu scores. Moreover, BLens achieves
an F1 of 0.460 due to a good precision of 0.655 and a decent
recall of 0.354. BLens RougeL, Bleu, and VarCLR scores are
0.393, 0.242, and 0.648 which suggest a decent capacity to
recover word order and produce meaningful function names.

In Table 4, we report the most predicted words of BLens
in the cross-project setting, along with their F1 scores. Again,
functions given for free (described in §6.1) are discarded.
Even in the cross-project setting, the extremely high scores
on some words (e.g., an F1 of 0.960 for the word visit) can
be attributed to the training set being highly relevant to a new
target program. BLens obtains nearly perfect scores for the
word ocaml because our dataset includes approximately 80
OCaml libraries as projects. Additionally, the source code of
the OCaml standard library is shared across three projects,
while individual OCaml libraries employ this code base, high-
lighting interconnections between projects and shared code
components. Likewise, the word curry is frequently used by
the OCaml compiler. Similarly, BLens achieves impressive
metrics for the word visit. This word appears in both the test
and training sets due to the common reliance on the QAPI in-
terface. The QAPI (QEMU API) schema defines a set of data
types explored with the visitor pattern. For the word soap, the
project gridsite-clients in the test set uses the SOAP (Simple
Object Access Protocol) for web service communications, a
pattern similarly observed in the training data from the parent
project gridsite and the related project lfc. Lastly, BLens can
accurately predict the word usal thanks to functions from the
libusal library inside projects like genisoimage and wodim.
The libusal library supports creating CD and DVD images.

Cross-Project Strict
Word Occ. F1 Occ. F1

ocaml 2162 0.975 0 -
get 1132 0.365 813 0.313
string 1050 0.498 817 0.465
free 519 0.750 379 0.688
type 465 0.780 150 0.599
initialise 435 0.352 372 0.305
fun 401 0.631 365 0.640
set 392 0.336 307 0.295
visit 389 0.960 0 -
soap 337 0.998 0 -
print 332 0.486 290 0.434
read 326 0.418 311 0.441
2 305 0.212 207 0.110
curry 304 1.000 0 -
path 288 0.368 279 0.378
name 285 0.417 255 0.388
usal 266 0.981 0 -
error 263 0.675 208 0.601
open 254 0.556 238 0.584
information 244 0.650 58 0.205

Table 4: Top 20 words predicted in the cross-project setting
with their occurrences and F1 scores in the cross-project and
strict settings.

We can categorize the rest of the words into different
operation groups. Firstly, words related to data manipula-
tion include get, set, read, name, and path. BLens achieves
F1 scores of 0.365, 0.336, 0.418, 0.417, and 0.368, respec-
tively. Secondly, for memory management, words include
free, initialise, and open. BLens exhibits good perfor-
mance with F1 scores of 0.750, 0.352, and 0.556, respectively.
Notably, free shows a high F1 score, demonstrating BLens’s
ability to identify memory liberation. Thirdly, on words re-
lated to output and notification, such as print and error,
BLens obtains F1 scores of 0.486 and 0.675. The higher F1
score for error indicates good performance in identifying
error handling code. Lastly, on miscellaneous words such
as string, type, fun, and information, BLens obtains F1
scores of 0.498, 0.780, 0.631, and 0.650, respectively.

Conclusion. In the cross-project setting, BLens signifi-
cantly outperforms SotA methods, particularly on metrics
capturing word order, with 42.2% F1, 71.7% RougeL, 188%
Bleu, and 12.1% VarCLR score improvement. BLens achieves
notable F1 scores on some general-purpose words, for in-
stance, 0.750 for free and 0.675 for error. While 0.460 F1,
0.393 RougeL, and 0.24 Bleu scores seem low in absolute
terms, predictions by BLens may be meaningful even when
different from the ground truth, as we discuss in §7.

10

Model F1 RougeL Bleu VarCLR

BLens 0.294 0.243 0.094 0.568
XFL 0.085 0.055 0.001 0.474

BL-S 0.299 0.240 0.110 0.571
SymLM 0.195 0.134 0.011 0.518

BL-A 0.321 0.272 0.098 0.585
AsmDep. 0.090 0.085 0.034 0.445

Table 5: Results in the strict setting.

6.4 Strict Setting

This experimental setting extends the cross-project setting to
rigorously evaluate generalization capabilities by minimizing
potential shared code components across projects. Ideally, this
would involve deduplication at the source code level; however,
as the dataset consists of pre-compiled binaries, we define a
set of heuristics derived from manual analysis to identify and
remove as many similar components from binaries as possible.
Initially, we remove hash duplicates and, for completeness,
also freely given functions (see §6.1). We observe a relatively
consistent drop of about 0.059 in the F1 score across most
methods. However, the impact is minimal on SymLM and
BL-S, as SymLM’s pre-processing has already removed part
of these functions.

To identify shared code where the hash differs after compi-
lation, we analyze the words in function names. Note that we
cannot simply remove all functions from testing whose names
occur in the training set, as this would exclude many benign
cases such as main or print_help. Shared code typically
arises from statically-linked runtime functions and library
calls, which often share name prefixes (e.g., ocaml, soap,
usal), or non-prefix words that frequently co-occur with pre-
fixes (e.g., curry co-occurs with ocaml, as it denotes curried
functions). We generate an exclusion list of prefixes and co-
occurring words found from a semi-automatic analysis of the
top 200 performing words and binaries. Any function whose
name appears in the training set, contains an excluded word,
and has an F1 > 0, is removed from the test set. Allowing
functions with an F1 of 0 avoids removing some functions
containing excluded words by chance. From the remaining
function names in the test set, we remove all excluded words.

Ultimately, 40 words and 6491 functions (2644 freely given
functions, 2526 hash duplicates, and 1321 other duplicates)
are removed from 1024 words and 23,875 initial functions
in the test set. In Table 4, we report the new occurrences
and F1 scores of the previously most predicted words in the
strict setting. We observe that only general purpose words
such as string, free, and type remain, with F1 scores of
0.465, 0.688, and 0.599, respectively. Results are summarized
in Table 5. While BLens’s F1 score decreases from 0.460 to
0.294, it still outperforms all competitors.

Model F1 RougeL Bleu VarCLR

BLens 0.445 0.376 0.207 0.639
BL-NP 0.287 0.257 0.057 0.554

Table 6: COMBO ablation results. BL-NP is a variant trained
without a pre-training phase. Ablation models are trained for
only 80 epochs.

Ensemble F1 RougeL Bleu VarCLR

C+P+D 0.445 0.376 0.207 0.639
C+D 0.438 0.378 0.196 0.638
C+P 0.425 0.370 0.182 0.629
P+D 0.364 0.293 0.096 0.595
C 0.425 0.366 0.184 0.633
P 0.352 0.293 0.109 0.593
D 0.310 0.254 0.060 0.574

Table 7: Input embeddings ablation results. C: CLAP, P:
PALMTREE, D: DEXTER, +: Combination of embeddings.

Conclusion. In the strict setting, BLens continues to signif-
icantly outperform the state of the art, with 53.3% F1, 79.4%
RougeL, 188% Bleu, and 10.3% VarCLR improvement. The
widening of the gap between BLens and other methods in
terms of F1 highlights BLens’s generalization.

6.5 Ablation Study
We now evaluate the impact of each component of BLens to
show that they are all beneficial. We start by evaluating the im-
pact of COMBO, which aligns multiple embeddings together
in a joint space with function names during pre-training. Then,
we assess the contribution of each input embedding (CLAP,
PALMTREE, and DEXTER) by evaluating each subset of these
embeddings. Finally, we investigate the advantages of LORD
over the traditional decoder architecture and the direct use of
COMBO as a decoder. We conduct the ablation in the cross-
project setting with training phases of 80 epochs, optimizing
the confidence threshold every four epochs.

6.5.1 COMBO

We define a new model, BL-NP, which is trained without
the COMBO pre-training phase. This model starts with the
ensemble encoder and turns embeddings into patches. Then,
instead of using the function encoder pre-trained on two tasks,
this model simply passes these patches to LORD function
name decoder for fine-tuning. In Table 6, we report metrics of
BL-NP and the base model BLens. BLens significantly outper-
forms BL-NP across all metrics, with F1 and VarCLR scores
of 0.445 and 0.639, compared to BL-NP 0.287 and 0.554,

11

4 12 20 28 36 44 52 60 68 76

Epoch

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

V
al

id
at

io
n

F 1
sc

or
e

0.419

0.4090.397

0.356

0.379

0.328
0.310

C+P+D
C+D
C+P

P+D
CLAP

PALMTREE

DEXTER

Figure 5: Curve of validation F1 scores over the fine-tuning
for the input embeddings ablation models.

respectively. This higher performance is further reflected in
the RougeL and Bleu scores, which are 0.376 and 0.207 for
BLens, compared to 0.257 and 0.057 for BL-NP, respectively.

Conclusion. The F1 score gain of 0.158 clearly demon-
strates the relevance of the contrastive captioning task.

6.5.2 Input Embeddings

Thanks to COMBO, BLens incorporates multiple embeddings.
The original model used CLAP, PALMTREE, and DEXTER.
Now, we train models with all possible combinations of these
embeddings. We report the metrics of each model in Table 7.
We remark that CLAP is the most effective embedding, evi-
denced by its F1 score of 0.425, compared to PALMTREE and
DEXTER, which have F1 scores of 0.352 and 0.310, respec-
tively. Combining all three embeddings achieves the best F1
score of 0.445. Although the improvement over the combina-
tion of CLAP and DEXTER amounts to merely 0.007 F1 score,
an analysis in Figure 5, reveals a consistent gain of around
0.01 on the validation set during fine-tuning.

Conclusion. While CLAP embeddings are powerful, the
synergy of CLAP, PALMTREE, and DEXTER embeddings
through COMBO is the most effective design.

6.5.3 LORD

LORD introduces a novel MLM task during fine-tuning and
a confidence threshold during inference to enhance preci-
sion. Thus, we devise a version of BLens named SIMPLE,
employing teacher forcing during fine-tuning with traditional
left-to-right autoregression, but still with a confidence thresh-
old. Additionally, we assess LORD-T0, a version of LORD
where the confidence threshold is fixed at 0. SIMPLE-T0
combines these two modifications. Lastly, as the COMBO
pre-training incorporates a captioning task, we also evalu-
ate COMBO’s direct predictions. We report summary results
in Table 8. COMBO as a decoder performs the worst across

Decoder Prec. Recall F1 RougeL Bleu VarCLR

LORD 0.667 0.334 0.445 0.376 0.207 0.639
SIMPLE 0.471 0.379 0.420 0.400 0.235 0.651
LORD-T0 0.436 0.377 0.404 0.397 0.261 0.642
SIMPLE-T0 0.427 0.392 0.409 0.411 0.242 0.653
COMBO 0.496 0.278 0.357 0.308 0.154 0.602

Table 8: LORD ablation results. LORD: BLens decoder, SIM-
PLE: Standard left-to-right decoder, -T0: Confidence thresh-
old is zero, COMBO: COMBO as a decoder.

all metrics. This is expected; while COMBO pre-training ben-
efits from multiple objectives [8], conflicts and imbalances
during optimization can hinder the performance of individual
objectives [65]. Fine-tuning is therefore essential for down-
stream tasks.

LORD achieves the highest precision at 0.667 and F1 score
at 0.445, demonstrating the effectiveness of both the novel
MLM task and the confidence threshold despite a trade-off
with the recall. In contrast, SIMPLE, LORD-T0, and SIMPLE-
T0 achieve better recall and RougeL scores, as RougeL is
recall-related. Moreover, SIMPLE-T0 achieves the highest
VarCLR score at 0.653 and LORD-T0 the highest Bleu at
0.261. Nevertheless, the contributions of LORD are positive
as the F1 score is the primary metric (see §6.1).

Conclusion. LORD allows an F1 score gain of 0.036 com-
pared to the usual decoder architecture, thanks to a significant
precision gain of 0.24, which is essential in real-life scenarios.
Moreover, COMBO pre-training alone leads to weak results.

7 Discussion

The evaluation of BLens shows significant improvement over
state-of-the-art methods in both cross-binary and cross-project
settings. Moreover, an ablation study confirms the relevance
of our contributions to BLens’s success.

Despite these successes, the F1 score of 0.460 in the cross-
project setting is relatively low in absolute terms, warranting
further investigation. To investigate this issue further, we per-
form a qualitative case study on six instances where BLens
predictions diverged from the ground truth. This analysis
aims to determine whether such predictions can be mean-
ingful and contextually accurate despite not matching the
ground truth. For completeness, we also include predictions
from XFL, SymLM, AsmDepictor, and HexT5 in the same
cases. Predictions, ground truth, and function-level scores are
shown in Table 9. We analyze the corresponding source code
in each case to evaluate if the predictions are appropriate.
For reference, we include source code for the functions in
Appendix B.

We first discuss the predictions of BLens before briefly
assessing those of other methods:

12

Case Name Ground truth Model Prediction F1 RougeL Bleu VarCLR

BLens shell 0 0 0.841 0.521
XFL ___ 0 0 0 0.564

1 execute execute SymLM. file_main 0 0 0.639 0.413
AsmDep. string_at 0 0 0.639 0.414
HexT5 print_sme_za_list 0 0 0.302 0.334

BLens pipe 0 0 0.114 0.336
eval evaluate_ XFL ___ 0 0 0 0.485

2 back back_ SymLM read 0 0 0.114 0.377
cmd cmd AsmDep. next_window 0 0 0.388 0.408

HexT5 new_logical_line 0 0 0.452 0.389

BLens key_file_dump 0 0 0.452 0.427
fsa_ XFL ___ 0 0 0 0.417

3 get_ get_ SymLM ___ 0 0 0 0.417
config config AsmDep. search_done 0 0 0.639 0.381

HexT5 madacc_size 0 0 0.639 0.264

BLens print_date 0 0 0.639 0.594
XFL ___ 0 0 0 0.536

4 dtws time SymLM time 1 1 1 1
time AsmDep. cli_color 0 0 0.639 0.321

HexT5 reset_items 0 0 0.639 0.361

BLens text_delete 0 0 0.639 0.696
remove XFL ___ 0 0 0 0.548

5 From remove_ SymLM function absent from the dataset - - - -
Edited from AsmDep. directory 0 0 0.309 0.437

HexT5 _collector_env_save_preloads 0 0 0.302 0.361

task task_ BLens on_button_cancel_clicked 0.444 0.444 0.368 0.756
panel_ panel_ XFL ___ 0 0 0 0.276

6 cancel_ cancel_ SymLM ___ 0 0 0 0.276
clicked_ clicked_ AsmDep. ___ 0 0 0 0.276

cbk callback HexT5 gsl_sf_lnfact_e 0 0 0.235 0.153

Table 9: Case study of predictions in the cross-project setting. ’___’: Empty prediction. We report function-level F1, RougeL,
Bleu, and VarCLR scores. Bleu scores are surprisingly high for predictions that differ from the ground truth, because the smoothed
version of BLEU-4 [50] inflates n-gram precisions, which renders the score meaningless for very short sentences. In the same
way, all of F1, RougeL, and Bleu scores for HexT5 are affected by HexT5 employing a different vocabulary.

1 BLens predicts shell instead of execute. The source
code executes a shell script given in argument, therefore the
prediction is close to the actual behavior of the function.
2 BLens predicts pipe instead of evaluate_back_command.

Since the source code executes a command inside back quotes
with a pipe, BLens has captured a key functionality.
3 BLens predicts key_file_dump instead of get_config.

In the source code, the configuration returned is an instance of
the GKeyFile structure. Hence, this prediction is more precise
than the ground truth.
4 BLens predicts print_date instead of time. Although

the function does not print, it returns a structure akin to a
datetime, making the prediction useful.
5 BLens predicts text_delete instead of remove_from.

The original name of the function was removeFromEdited,
but edited is not part of the vocabulary. This function comes

from the hexedit project, a hexadecimal and ASCII text editor.
The source code reveals that this function deletes text from
an existing edition; therefore, the prediction is appropriate.
Despite an F1 score of 0, VarCLR validates the prediction
with a score of 0.696.
6 BLens predicts on_button_cancel_clicked instead of
task_panel_cancel_clicked_callback. Although differ-
ent from the ground truth, this prediction is semantically close,
as reflected by a VarCLR score of 0.756. The name pattern
on...clicked is common for callbacks on click events in
graphical user interfaces, and the choice of button instead of
task_panel can be explained by the function’s first argument
being a GtkButton that has been clicked on.

In case six, BLens generates a clever rephrasing of the
ground truth. The ablation study data allows us to assess
each component of BLens qualitatively. Without COMBO

13

pre-training or with a single embedding, BLens predicts noth-
ing. Combining CLAP with PALMTREE results in ui, and
with CLAP and DEXTER in on_delete_clicked. A simpler
decoder yields on_entry_activate. This highlights the ef-
fectiveness of BLens’s design.

Now, we briefly assess the other methods. Firstly, XFL pre-
dictions are entirely empty, indicating that the model is conser-
vative and avoids making incorrect predictions in challenging
examples, resulting in more false negatives but fewer false
positives. Secondly, among SymLM’s five predictions, two are
inappropriate based on the function names and source code
(e.g., 2 : read instead of evaluate_back_command), two are
empty and one is correct. Note that in case five, the function
is absent from SymLM’s sub-dataset. Thirdly, AsmDepictor
provides six predictions, of which five are inappropriate (e.g.,
4 : string_at instead of execute), and one is empty. Lastly,

all six predictions from HexT5 are inappropriate and mean-
ingless (e.g., 5 : _collector_env_save_preloads instead
of remove_from). A quick review of more predictions reveals
that the pre-trained HexT5 model, which we used due to the
unavailability of HexT5 training implementation, performs
very poorly. This could also be due to large distribution shifts
between datasets and low generalization from the model.

Overall, this case study suggests that, contrary to other
methods, BLens can predict meaningful names in the cross-
project setting even if the F1 score is low. Nevertheless, there
are some further points to discuss.

Dataset overlap. Concerns about dataset overlap arise be-
cause we reused pre-trained CLAP and PALMTREE embed-
dings. However, these pre-trained models are based on broad
datasets and trained with other learning objectives. Even if
they have encountered some projects from our dataset, they
are designed to generalize across different projects and com-
piler settings, rather than memorizing specific examples. Us-
ing pre-trained embeddings is common in machine learning
as it leverages general-purpose models for new tasks, saving
computational resources and enhancing model robustness for
specific fine-tuning tasks. Nevertheless, BLens already sur-
passes the state of the art with only DEXTER embeddings and
merely 80 epochs (Table 7).

Dataset diversity. Our dataset is taken from related re-
search [56, 58]. This choice enables straightforward compar-
isons and grants a tokenizer specifically designed for this
dataset. Since this dataset consists mostly of binaries from
Debian packages written in C, the three thousand projects
lack diversity. Nevertheless, BLens could be applied to other
datasets and programming languages.

Evaluation metrics. Evaluating function names remains
challenging due to the complexity of natural language. Var-
CLR measures semantic similarity by embedding names to
a high-dimensional space. This captures a degree of seman-
tic similarity, as illustrated by cases five and six. Yet, Var-
CLR assigns high scores to empty predictions because the
empty string lies at the center of the space. As seen in Table 9,

VarCLR favors empty predictions over meaningful alterna-
tives in the first two cases. Additionally, incorrect predictions
appear relevant (e.g., directory scores 0.437 for remove_-
from), and VarCLR can be misaligned with human judgment,
preferring next_window over pipe for eval_back_cmd. In
contrast, the F1 score relies strictly on the set of words in
the ground truth. Pre-processing of function names partially
normalizes the ground truth, successfully addressing most
abbreviations and smaller variations.

CodeWordNet [35, 83] proposes considering word equiv-
alences (e.g., initialize and create) during the F1 com-
putation. However, this requires manual validation and over-
simplifies context-specific synonyms. An alternative method
is to use source code to better normalize function names, as
proposed by Carvalho et al. [9]. For example, in the 3dchess
project, dir would expand to direction rather than the more
common directory. However, this requires access to the
training data source code, which was not feasible in this study.

8 Related Work

Function name prediction. Pioneering work on function
name prediction relies on traditional machine learning tech-
niques. For instance, Debin [28] and Punstrip [56] em-
ploy probabilistic graphical models, while NRFE [24] is
a lightweight framework over various features. These ap-
proaches have low granularity and de facto identify functions
frequent in the training data. On the other hand, XFL [58]
predicts sets of words with multi-label classification. How-
ever, XFL’s word ordering is agnostic to the binary code.
Recent works use the transformer [72] encoder-decoder archi-
tecture to translate binary code into function names, treating
binary code and human-readable languages both as natural
languages. For instance, AsmDepictor [37] focuses on in-
structions, NERO [15] uses augmented control flow graphs
to represent the calling context, SymLM [35] employs pre-
trained function embeddings to capture execution behavior,
and HexT5 [83] works with low-level pseudocode, though it
relies on a challenging decompilation step to convert from
binary code.

Binary code information recovery. Variable name recov-
ery and type inference require a more concrete representation
of function behavior. The pioneering work Debin [28] relied
on memory cells and instructions to recover variable names.
Some recent approaches rely on decompiled pseudocode.
DIRE [41], DIRECT [55], and DIRTY [11] use encoder-
decoder architectures starting from pseudocode to recover
variable names. The trend is toward designing multiple pre-
training tasks [11, 83]. We already mentioned HexT5 [83],
which unifies multiple tasks, including summarization and
function name prediction. These approaches rely on pseu-
docode, thus departing from binary code. CP-BCS [86] in-
corporates control flow graphs and assembly code but still
primarily uses pseudocode.

14

Source code information recovery. Efforts have also been
made to recover source code information. Code2vec [1] learns
function embeddings from abstract syntax trees and can be
fine-tuned for various tasks such as code retrieval and classifi-
cation. Interestingly, it achieves a good F1 score on function
name prediction across projects. CodeT5 [79] employs the
transformer architecture to translate between function sum-
maries and source code through various pre-training tasks.
Source code presents different challenges than binary code
because compiler optimizations introduce complex transfor-
mations and remove explicit types (e.g., unsigned int or array),
making alignment harder.

Embeddings for binary functions. More approaches exist
to represent binary functions. Xu et al. [85] use a Siamese ar-
chitecture to train a graph neural network to represent control
flow graphs, while Li et al. [47] use a deep graph network and
learn graph editing distances. They learn to discriminate pairs
of binary functions compiled from different sources. With the
rise of transformer architectures, self-supervised tasks such
as Masked Language Modeling have been adopted to learn
deep semantics of assembly code [17, 76, 97].

Image captioning. We have discussed several pre-training
tasks, including Contrastive Image-Language Pre-training
(CLIP) [63] and contrastive captioning (CoCa) [88], which are
essential to multimodal learning. Additional tasks have been
developed, spanning unimodal tasks like image reconstruc-
tion [13] to multimodal tasks like object detection [46, 91],
word-region alignment [13], and question answering [78].
Overall, the trend is toward combining multiple tasks in pre-
training, a domain where OFA [78] excels. However, defining
equivalent tasks for binary code is difficult. ViT [19], the
original vision transformer, pioneered image patches and sur-
passed previous convolutional approaches [39,82]. Since then,
other transformers have scaled to hundreds of millions of pa-
rameters, avoiding overfitting due to the generality of images
and massive datasets [30, 77].

Contrastive learning. Contrastive learning [27] minimizes
the distance to anchors and maximizes it to others. We have
already described techniques that employ text embedding as
anchors, such as CLAP [75] and CONTRABIN [95]. BLens
employs a learnable function name representation. Another
line of work creates anchors with semantics-preserving trans-
formations, but numerous transformations are required to ob-
tain semantics-aware embeddings. Various transformations
can be applied to source code [18, 33, 34]. Moreover, compil-
ing the same source with different compilers, options, or for
different architectures can produce anchors [34, 51, 70, 83].

Embeddings fusion. We use multimodal data fusion [96]
to incorporate different views of functions. While fusing raw
features [20, 73] might appear beneficial at first glance, fus-
ing pre-trained embeddings takes advantage of the training
and engineering efforts behind SotA embeddings. To fuse
heterogeneous data, cross-modal and intra-modal attention
mechanisms [20, 23, 31, 92], as well as a transformer [10, 42]

can be applied. An efficient attention process requires a suf-
ficient number of tokens. Our innovation involves cutting
function-level embeddings into multiple smaller patches, en-
abling the model to capture finer-grained relationships within
the data. By incorporating positional encoding, we maintain
the sequential integrity of the data.

Transformer decoding. There are several other de-
coding schemes apart from the classic left-to-right
paradigm [25, 45, 48, 62, 68, 69]. Our flexible autoregression
scheme relies on Masked Language Modeling (MLM) to
estimate the probability distribution of all unknown words
given known words. Several parallel developments also utilize
MLM to enhance speed [25] or to enable sentence generation
in any order [48, 68].

9 Conclusion

We tackle the function name prediction problem by introduc-
ing BLens, a novel approach inspired by multimodal learning.
It leverages two unique components: COMBO and LORD.
COMBO first ensembles state-of-the-art binary function em-
beddings into function patches. Then, patches are projected
into tokens aligned with the word latent space via contrastive
captioning loss, thereby capturing spatial relationships within
the binary code. LORD decodes the function tokens into the
function name through a new Masked Language Modeling
task tailored specifically to function names.

BLens sets a new state of the art in function name predic-
tion, improving the main metric, F1 score, by 12%, with a
precision increase to 0.917, which is critical for real-world ap-
plications. Additionally, BLens achieves significant improve-
ment in grammatical accuracy, with a 32.6% boost in RougeL
and a 79.1% boost in Bleu scores. Against binaries coming
from new projects, BLens demonstrates remarkable robust-
ness, increasing F1 by 42.2%, RougeL by 71.7%, and Bleu
by an impressive 188%. Lastly, in a strict setting that reduces
shared components BLens provides even more gains, with an
improvement of 53.3% in terms of F1 score.

Ethics Considerations

The dataset used in this study comes from open-source Debian
packages, and we did not perform any unauthorized gather-
ing of binary code. On the one hand, we acknowledge that
our work in reverse engineering could have negative implica-
tions for some stakeholders, including its potential misuse for
copyright infringement. On the other hand, advancing reverse
engineering can significantly aid in identifying and mitigating
malicious code early in an attack. Overall, we believe that our
work provides a net positive impact on software security.

15

Open Science

We share the following artifacts on Zenodo [7]: BLens’s im-
plementation, pre-processed CLAP embeddings, PALMTREE
embeddings, and DEXTER embeddings for our dataset.

Due to GPL version 3 [21] licensing constraints, we can-
not share the binary Debian packages dataset, as it requires
conjointly distributing the source code. However, the Debian
binaries are freely available separately. We believe that the
shared artifacts will support the reproducibility and validation
of our research findings.

Acknowledgments

This work was funded in part by the Deutsche Forschungs-
gemeinschaft (DFG), reference 378803395 (ConVeY) and
France Agence Nationale de la Recherche (ANR), program
France 2030, reference ANR-22-PETCC-0001.

References

[1] U. Alon, M. Zilberstein, O. Levy, and E. Yahav.
code2vec: Learning distributed representations of code.
Proceedings of the ACM on Programming Languages,
3(POPL), 2019.

[2] I. Arce. Bug hunting: The seven ways of the security
samurai (supplement to comput. magazine). IEEE Com-
puter, 35(04), 2002.

[3] F. Artuso, M. Mormando, G. A. Di Luna, and L. Quer-
zoni. BinBert: Binary code understanding with a fine-
tunable and execution-aware transformer. IEEE Trans.
Dependable Sec. Comput., 2024.

[4] L. J. Ba, J. R. Kiros, and G. E. Hinton. Layer normal-
ization. arXiv preprint arXiv:1607.06450, 2016.

[5] G. Bachmann and V. Nagarajan. The pitfalls of next-
token prediction. arXiv preprint arXiv:2403.06963,
2024.

[6] T. Baltrušaitis, C. Ahuja, and L.-P. Morency. Multi-
modal machine learning: A survey and taxonomy. IEEE
Trans. Pattern Anal. Mach. Intell., 41(2), 2018.

[7] T. Benoit, Y. Wang, M. Dannehl, and J. Kinder.
BLens artifact. https://doi.org/10.5281/zenodo.
14732394, 2025.

[8] R. Caruana. Multitask learning. Mach. Learn., 28, 1997.
[9] N. R. Carvalho, J. J. Almeida, P. R. Henriques, and

M. J. Varanda. From source code identifiers to natural
language terms. Journal of Systems and Software, 2015.

[10] F. Chen, M. Han, H. Zhao, Q. Zhang, J. Shi, S. Xu,
and B. Xu. X-llm: Bootstrapping advanced large lan-
guage models by treating multi-modalities as foreign
languages. arXiv preprint arXiv:2305.04160, 2023.

[11] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues,
G. Neubig, and B. Vasilescu. Augmenting decompiler
output with learned variable names and types. In 31st
USENIX Security Symposium (USENIX Security 22),
2022.

[12] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig,
B. Vasilescu, and C. Le Goues. VarCLR: Variable se-
mantic representation pre-training via contrastive learn-
ing. In IEEE/ACM Int. Conf. Software Engineering
(ICSE). ACM, 2022.

[13] Y. Chen, L. Li, L. Yu, A. E. Kholy, F. Ahmed, Z. Gan,
Y. Cheng, and J. Liu. UNITER: universal image-text rep-
resentation learning. In Proc. European Conf. Comput.
Vision (ECCV). Springer, 2020.

[14] C. Cifuentes. The impact of copyright on the develop-
ment of cutting edge binary reverse engineering technol-
ogy. In Working Conf. Reverse Engineering (WCRE).
IEEE Comput. Society, 1999.

[15] Y. David, U. Alon, and E. Yahav. Neural reverse en-
gineering of stripped binaries using augmented control
flow graphs. Proc. ACM Program. Lang., 4(OOPSLA),
2020.

[16] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Proc. Conf. North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (NAACL-HLT).
ACL, 2019.

[17] S. H. H. Ding, B. C. M. Fung, and P. Charland.
Asm2Vec: Boosting static representation robustness for
binary clone search against code obfuscation and com-
piler optimization. In IEEE Symp. Security and Privacy
(S&P). IEEE, 2019.

[18] Y. Ding, L. Buratti, S. Pujar, A. Morari, B. Ray, and
S. Chakraborty. Towards learning (dis)-similarity of
source code from program contrasts. In Proc. Annu.
Meeting Assoc. Computational Linguistics (ACL), 2022.

[19] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weis-
senborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby.
An image is worth 16x16 words: Transformers for image
recognition at scale. In Int. Conf. Learning Representa-
tions (ICLR), 2021.

[20] M. Fang, S. Peng, Y. Liang, C.-C. Hung, and S. Liu.
A multimodal fusion model with multi-level attention
mechanism for depression detection. Biomedical Signal
Processing and Control, 82, 2023.

[21] F. S. Foundation. GNU general public license version 3.
https://www.gnu.org/licenses/gpl-3.0.html.

[22] D. Francis, P. A. Nguyen, B. Huet, and C. Ngo. Fusion
of multimodal embeddings for ad-hoc video search. In

16

http://gepris.dfg.de/gepris/projekt/378803395
https://doi.org/10.5281/zenodo.14732394
https://doi.org/10.5281/zenodo.14732394
https://www.gnu.org/licenses/gpl-3.0.html

IEEE/CVF Int. Conf. Comput. Vision Workshops (ICCV
Workshops). IEEE, 2019.

[23] D. Gao, K. Li, R. Wang, S. Shan, and X. Chen. Multi-
modal graph neural network for joint reasoning on vi-
sion and scene text. In Proc. IEEE/CVF Conf. Comput.
Vision Pattern Recognition (CVPR). Comput. Vision
Foundation / IEEE, 2020.

[24] H. Gao, S. Cheng, Y. Xue, and W. Zhang. A lightweight
framework for function name reassignment based on
large-scale stripped binaries. In ACM SIGSOFT Int.
Symp. Software Testing and Analysis (ISSTA), 2021.

[25] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer.
Mask-predict: Parallel decoding of conditional masked
language models. arXiv preprint arXiv:1904.09324,
2019.

[26] O. Goldman, A. Jacovi, A. Slobodkin, A. Maimon, I. Da-
gan, and R. Tsarfaty. Is it really long context if all you
need is retrieval? towards genuinely difficult long con-
text NLP. In Proc. Conf. Empirical Methods in Natural
Language Processing (EMNLP). ACL, 2024.

[27] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality
reduction by learning an invariant mapping. In IEEE
Comput. Soc. Conf. Comput. Vision Pattern Recognition
(CVPR). IEEE Comput. Society, 2006.

[28] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. T.
Vechev. Debin: Predicting debug information in stripped
binaries. In Proc. ACM SIGSAC Conf. Comput. and
Commun. Security (CCS). ACM, 2018.

[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In 2016 IEEE Conf.
on Comput. Vision Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. IEEE Computer
Society, 2016.

[30] X. Hu, Z. Gan, J. Wang, Z. Yang, Z. Liu, Y. Lu, and
L. Wang. Scaling up vision-language pre-training for
image captioning. In Proc. IEEE/CVF Conf. Comput.
Vision Pattern Recognition (CVPR), 2022.

[31] Z. Hu, G. Feng, J. Sun, L. Zhang, and H. Lu. Bi-
directional relationship inferring network for referring
image segmentation. In Proc. IEEE/CVF Conf. Comput.
Vision Pattern Recognition (CVPR), 2020.

[32] H. Jain, Y. Prabhu, and M. Varma. Extreme multi-label
loss functions for recommendation, tagging, ranking &
other missing label applications. In ACM SIGKDD Int.
Conf. Knowledge Discovery and Data Mining (KDD).
ACM, 2016.

[33] P. Jain and A. Jain. Contrastive code representation
learning. In Proceedings of the 2021 Conf. on Empirical
Methods in Natural Language Processing, 2021.

[34] S. Jiang, C. Fu, S. He, J. Lv, L. Han, and H. Hu. Bincola:
Diversity-sensitive contrastive learning for binary code
similarity detection. IEEE Trans. Softw. Eng., 2024.

[35] X. Jin, K. Pei, J. Y. Won, and Z. Lin. SymLM: Pre-
dicting function names in stripped binaries via context-
sensitive execution-aware code embeddings. In Proc.
ACM SIGSAC Conf. Comput. and Commun. Security
(CCS), 2022.

[36] L. Ke, W. Pei, R. Li, X. Shen, and Y.-W. Tai. Reflec-
tive decoding network for image captioning. In Proc.
IEEE/CVF Int. Conf. Comput. Vision (ICCV), 2019.

[37] H. Kim, J. Bak, K. Cho, and H. Koo. A transformer-
based function symbol name inference model from an
assembly language for binary reversing. In Proc. ACM
Asia Conf. Comput. and Commun. Security (ASIA CCS).
ACM, 2023.

[38] J. F. Kolen and S. C. Kremer. Dynamical Recurrent
Networks, pages 3–11. Wiley-IEEE Press, 2001.

[39] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung,
S. Gelly, and N. Houlsby. Big transfer (bit): General vi-
sual representation learning. In 16th Europ. Conf. Com-
put. Vision (ECCV), volume 12350 of LNCS. Springer,
2020.

[40] A. Kristiadi, M. Hein, and P. Hennig. Being bayesian,
even just a bit, fixes overconfidence in relu networks. In
Proc. Int. Conf. Machine Learning (ICML), volume 119
of PMLR, 2020.

[41] J. Lacomis, P. Yin, E. J. Schwartz, M. Allamanis, C. L.
Goues, G. Neubig, and B. Vasilescu. DIRE: A neu-
ral approach to decompiled identifier naming. In 34th
IEEE/ACM Int. Conf. on Automated Software Engineer-
ing (ASE). IEEE, 2019.

[42] J. Lei, L. Li, L. Zhou, Z. Gan, T. L. Berg, M. Bansal, and
J. Liu. Less is more: Clipbert for video-and-language
learning via sparse sampling. In Proc. IEEE/CVF Conf.
Comput. Vision Pattern Recognition (CVPR), 2021.

[43] W. Li, X. Zhang, Y. Wang, Z. Yan, and R. Peng.
Graph2seq: Fusion embedding learning for knowledge
graph completion. IEEE Access, 7, 2019.

[44] X. Li, Y. Qu, and H. Yin. PalmTree: Learning an assem-
bly language model for instruction embedding. In Proc.
ACM SIGSAC Conf. Comput. and Commun. Security
(CCS), 2021.

[45] X. Li, B. Trabucco, D. H. Park, M. Luo, S. Shen, T. Dar-
rell, and Y. Gao. Discovering non-monotonic autoregres-
sive orderings with variational inference. In Int. Conf.
Learning Representations (ICLR), 2021.

[46] X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang,
H. Hu, L. Dong, F. Wei, Y. Choi, and J. Gao. Os-
car: Object-semantics aligned pre-training for vision-
language tasks. In Proc. European Conf. Comput. Vi-
sion (ECCV), volume 12375 of Lecture Notes in Comput.
Science. Springer, 2020.

[47] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli. Graph
matching networks for learning the similarity of graph

17

structured objects. In Proc. Int. Conf. Machine Learning
(ICML), 2019.

[48] Y. Liao, X. Jiang, and Q. Liu. Probabilistically masked
language model capable of autoregressive generation
in arbitrary word order. In Proc. Annu. Meeting As-
sociation for Computational Linguistics (ACL). ACL,
2020.

[49] C. Lin and F. J. Och. Automatic evaluation of machine
translation quality using longest common subsequence
and skip-bigram statistics. In Proc. Annu. Meeting As-
sociation for Computational Linguistics (ACL). ACL,
2004.

[50] C. Lin and F. J. Och. ORANGE: a method for evaluating
automatic evaluation metrics for machine translation. In
Int. Conf. Computational Linguistics (COLING), 2004.

[51] B. Liu, W. Huo, C. Zhang, W. Li, F. Li, A. Piao, and
W. Zou. αdiff: cross-version binary code similarity de-
tection with DNN. In IEEE/ACM Int. Conf. Automated
Software Engineering (ASE). ACM, 2018.

[52] A. Mantovani, S. Aonzo, Y. Fratantonio, and
D. Balzarotti. RE-mind: a first look inside the
mind of a reverse engineer. In USENIX Security
Symposium, (USENIX). USENIX Association, 2022.

[53] L. Massarelli, G. A. D. Luna, F. Petroni, R. Baldoni, and
L. Querzoni. SAFE: self-attentive function embeddings
for binary similarity. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (DIMVA), volume
11543. Springer, 2019.

[54] G. Monea, A. Joulin, and E. Grave. Pass: Parallel
speculative sampling. workshop Efficient Natural Lan-
guage and Speech Processing (ENLSP), (NeurIPS),
abs/2311.13581, 2023.

[55] V. Nitin, A. Saieva, B. Ray, and G. Kaiser. DIRECT: A
transformer-based model for decompiled variable name
recovery. Workshop Natural Language Processing for
Programming (NLP4Prog), 2021.

[56] J. Patrick-Evans, L. Cavallaro, and J. Kinder. Proba-
bilistic naming of functions in stripped binaries. In
Proc. 35th Annu. Comput. Security Applications Conf.
(ACSAC). ACM, 2020.

[57] J. Patrick-Evans, M. Dannehl, and J. Kinder. Sup-
plementary material for XFL. https://github.com/
lmu-plai/xfl, 2023.

[58] J. Patrick-Evans, M. Dannehl, and J. Kinder. XFL: Nam-
ing functions in binaries with extreme multi-label learn-
ing. In Proc. IEEE Symp. Security and Privacy (S&P).
IEEE, 2023.

[59] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao,
D. Williams-King, V. Ummadisetty, J. Yang, B. Ray,
and S. Jana. StateFormer: fine-grained type recovery
from binaries using generative state modeling. In ACM

SIGSOFT Symp. Foundations of Software Engineering
(ESEC/FSE), 2021.

[60] K. Pei, Z. Xuan, J. Yang, S. Jana, and B. Ray. Trex:
Learning execution semantics from micro-traces for bi-
nary similarity. arXiv preprint arXiv:2012.08680, 2021.

[61] D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T. Liu. How
could neural networks understand programs? In Proc.
Int. Conf. Machine Learning (ICML). PMLR, 2021.

[62] W. Qi, Y. Yan, Y. Gong, D. Liu, N. Duan, J. Chen,
R. Zhang, and M. Zhou. ProphetNet: Predicting future
n-gram for sequence-to-sequence pre-training. arXiv
preprint arXiv:2001.04063, 2020.

[63] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark,
G. Krueger, and I. Sutskever. Learning transferable
visual models from natural language supervision. In
Proc. Inf. Conf. Machine Learning (ICML), volume 139
of PMLR, 2021.

[64] A. Santilli, S. Severino, E. Postolache, V. Maiorca,
M. Mancusi, R. Marin, and E. Rodolà. Accelerating
transformer inference for translation via parallel decod-
ing. In Proc. Annu. Meeting Association for Computa-
tional Linguistics (ACL). ACL, 2023.

[65] O. Sener and V. Koltun. Multi-task learning as multi-
objective optimization. Annu. Conf. Neural Information
Processing Systems (NeurIPS), 31, 2018.

[66] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Krügel, and G. Vigna. SOK: (state of) the art of war:
Offensive techniques in binary analysis. In Proc. IEEE
Symp. Security and Privacy (S&P), 2016.

[67] M. Sikorski and A. Honig. Practical Malware Analysis:
The Hands-On Guide to Dissecting Malicious Software.
No Starch Press, San Francisco, 2012.

[68] K. Song, X. Tan, T. Qin, J. Lu, and T. Liu. MASS:
masked sequence to sequence pre-training for language
generation. In Proc. Int. Conf. Machine Learning
(ICML). PMLR, 2019.

[69] M. Stern, W. Chan, J. Kiros, and J. Uszkoreit. Inser-
tion transformer: Flexible sequence generation via inser-
tion operations. In Proc. Int. Conf. Machine Learning
(ICML). PMLR, 2019.

[70] R. Sun, S. Guo, J. Guo, W. Li, X. Zhang, X. Guo, and
Z. Pan. GraphMoCo: A graph momentum contrast
model for large-scale binary function representation
learning. NeuroComputing, 575, 2024.

[71] R. Team. Radare2 Book. GitHub, 2017.

[72] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. In Annu. Conf. Neural Infor-
mation Processing Systems (NeurIPS), 2017.

18

https://github.com/lmu-plai/xfl
https://github.com/lmu-plai/xfl

[73] J. Venugopalan, L. Tong, H. R. Hassanzadeh, and M. D.
Wang. Multimodal deep learning models for early de-
tection of alzheimer’s disease stage. Scientific reports,
11(1), 2021.

[74] D. Votipka, S. M. Rabin, K. K. Micinski, J. S. Foster,
and M. L. Mazurek. An observational investigation
of reverse engineers’ processes. In USENIX Security
Symposium (USENIX). USENIX Association, 2020.

[75] H. Wang, Z. Gao, C. Zhang, Z. Sha, M. Sun, Y. Zhou,
W. Zhu, W. Sun, H. Qiu, and X. Xiao. CLAP: learning
transferable binary code representations with natural
language supervision. In ACM SIGSOFT Int. Symp.
Software Testing and Analysis (ISSTA). ACM, 2024.

[76] H. Wang, W. Qu, G. Katz, W. Zhu, Z. Gao, H. Qiu,
J. Zhuge, and C. Zhang. jTrans: jump-aware transformer
for binary code similarity detection. In ACM SIGSOFT
Int. Symp. Software Testing and Analysis (ISSTA). ACM,
2022.

[77] J. Wang, Z. Yang, X. Hu, L. Li, K. Lin, Z. Gan, Z. Liu,
C. Liu, and L. Wang. GIT: A generative image-to-
text transformer for vision and language. Trans. Mach.
Learn. Res., 2022.

[78] P. Wang, A. Yang, R. Men, J. Lin, S. Bai, Z. Li, J. Ma,
C. Zhou, J. Zhou, and H. Yang. OFA: unifying architec-
tures, tasks, and modalities through a simple sequence-
to-sequence learning framework. In Proc. Int. Conf.
Machine Learning (ICML), volume 162. PMLR, 2022.

[79] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi. Codet5:
Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation. In Proc.
Conf. Empirical Methods in Natural Language Process-
ing (EMNLP). ACL, 2021.

[80] H. Wei, R. Xie, H. Cheng, L. Feng, B. An, and Y. Li.
Mitigating neural network overconfidence with logit
normalization. In Proc. Int. Conf. Machine Learning
(ICML). PMLR, 2022.

[81] A. Wettig, T. Gao, Z. Zhong, and D. Chen. Should you
mask 15% in masked language modeling? In Proc. of
the Conf. of the European Chapter of the ACL (EACL),
pages 2985–3000. Association for Computational Lin-
guistics, 2023.

[82] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le. Self-
training with noisy student improves imagenet classi-
fication. In Proc. IEEE/CVF Conf. Comput. Vision
Pattern Recognition (CVPR), 2020.

[83] J. Xiong, G. Chen, K. Chen, H. Gao, S. Cheng, and
W. Zhang. Hext5: Unified pre-training for stripped bi-
nary code information inference. In IEEE/ACM Int.
Conf. Automated Software Engineering (ASE). IEEE,
2023.

[84] X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao,
Q. Shi, Z. Zhang, and X. Zhang. Improving binary

code similarity transformer models by semantics-driven
instruction deemphasis. In Proc. Int. Symp. Software
Testing and Analysis (ISSTA). ACM, 2023.

[85] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song.
Neural network-based graph embedding for cross-
platform binary code similarity detection. In Proc. ACM
SIGSAC Conf. Comput. and Comm. Security (CCS).
ACM, 2017.

[86] T. Ye, L. Wu, T. Ma, X. Zhang, Y. Du, P. Liu, S. Ji, and
W. Wang. CP-BCS: binary code summarization guided
by control flow graph and pseudo code. In Proc. Conf.
Empirical Methods in Natural Language Processing
(EMNLP). ACL, 2023.

[87] W. Ye, Y. Ma, X. Cao, and K. Tang. Mitigating trans-
former overconfidence via lipschitz regularization. In
Uncertainty in Artificial Intelligence (UAI). PMLR,
2023.

[88] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhos-
seini, and Y. Wu. CoCa: Contrastive captioners are
image-text foundation models. Trans. Mach. Learn.
Res., 2022.

[89] Z. Yu, R. Cao, Q. Tang, S. Nie, J. Huang, and S. Wu. Or-
der matters: Semantic-aware neural networks for binary
code similarity detection. In Conf. Artificial Intelligence
(AAAI). AAAI Press, 2020.

[90] L. Yuan, D. Chen, Y.-L. Chen, N. Codella, X. Dai, J. Gao,
H. Hu, X. Huang, B. Li, C. Li, et al. Florence: A new
foundation model for computing vision. arXiv preprint
arXiv:2111.11432, 2021.

[91] P. Zhang, X. Li, X. Hu, J. Yang, L. Zhang, L. Wang,
Y. Choi, and J. Gao. VinVL: Revisiting visual represen-
tations in vision-language models. In Proc. IEEE/CVF
Conf. Comput. Vision Pattern Recognition (CVPR),
2021.

[92] R. Zhang, Z. Zeng, Z. Guo, and Y. Li. Can language
understand depth? In ACM Int. Conf. on Multimedia
(MM). ACM, 2022.

[93] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and
Y. Artzi. BERTScore: Evaluating text generation with
BERT. In Int. Conf. Learning Representations (ICLR),
2020.

[94] X. Zhang, W. Sun, J. Pang, F. Liu, and Z. Ma. Simi-
larity metric method for binary basic blocks of cross-
instruction set architecture. In Proc. Workshop Binary
Analysis Research (BAR), 2020.

[95] Y. Zhang, C. Huang, Y. Zhang, K. Cao, S. T. Andersen,
H. Shao, K. Leach, and Y. Huang. Pre-training represen-
tations of binary code using contrastive learning. arXiv
preprint arXiv:2210.05102, 2024.

[96] F. Zhao, C. Zhang, and B. Geng. Deep multimodal data
fusion. ACM Comput. Surv., 56(9), 2024.

19

[97] W. Zhu, H. Wang, Y. Zhou, J. Wang, Z. Sha, Z. Gao, and
C. Zhang. kTrans: Knowledge-aware transformer for bi-
nary code embedding. arXiv preprint arXiv:2308.12659,
2023.

A Automatic Function Names

To accurately simulate a real-world scenario of using name
prediction, e.g., within an advanced disassembler, we follow
Patrick-Evans et al. [58] by treating twenty functions as
automatically inferred in each metric: init, fini, csu_init,
csu_fini, start, libc_csu_init, libc_csu_fini, libc_-
start, deregister_tm_clones, register_tm_clones,
rtld_init, main, do_global_dtors_aux, frame_dummy,
frame_dummy_init_array_entry, do_global_dtors_-
aux_fini_array_entry init_array_end, init_array_-
start, start_main, libc_start_main. This list matches
those functions automatically labeled by IDA Pro.

B Case Study

1 int execute(char *program , char *action ,
2 char *stardata) {
3 char *path; int result;
4 path = malloc(strlen(SHELL)+strlen(SCRIPTS_DIR)+
5 strlen(program)+strlen(action)+
6 strlen(stardata)+4);
7 if (!path) { return 1; }
8 sprintf(path , "%s %s%s %s %s", SHELL ,
9 SCRIPTS_DIR , program , action , stardata);

10 result = system(path); free(path);
11 return result;
12 }

Listing 1: Case 1 source code.

1 void evalbackcmd(union node *n,
2 struct backcmd *result) {
3 int pip [2]; struct job *jp;
4 result ->fd = -1; result ->buf = NULL;
5 result ->nleft = 0; result ->jp = NULL;
6 if (n == NULL) { goto out; }
7 if (pipe(pip) <0){sh_error("Pipe call failed");}
8 jp = makejob(n, 1);
9 if (forkshell(jp, n, FORK_NOJOB)==0) {

10 FORCEINTON; close(pip [0]);
11 if (pip [1] != 1) { dup2(pip[1], 1);
12 close(pip [1]); }
13 ifsfree (); evaltreenr(n, EV_EXIT);
14 }
15 close(pip [1]);
16 result ->fd = pip [0]; result ->jp = jp;
17 out:
18 TRACE (("evalbackcmd done: fd =%d buf=0x %x

nleft =%d jp=0x%x\n", result ->fd, result ->buf ,
result ->nleft , result ->jp));

19 }

Listing 2: Case 2 source code.

1 GKeyFile *fsa_get_config(void) {
2 GKeyFile *config_file = g_key_file_new ();
3 GError *err = NULL;
4 const char *filename = fs_get_config_file ();
5 int rv; int flags = G_KEY_FILE_NONE;
6 rv = g_key_file_load_from_file(config_file ,

filename , flags , &err);
7 if (!rv || err != NULL) {
8 if (err ->code != G_FILE_ERROR_NOENT && err ->

code != G_FILE_ERROR_EXIST && err ->code !=
G_FILE_ERROR_ISDIR)

9 {fsa_error(LOG_ERR , "error reading %s: %s(%d)"
, filename , err ->message , err ->code);}

10 g_error_free(err);
11 g_key_file_free(config_file);
12 errno = ADM_ERR_GENERIC; return NULL;
13 }
14 errno = 0; return config_file;
15 }

Listing 3: Case 3 source code.

1 struct tws* dtwstime () { // from dtime.c
2 long clock; (void) time(&clock);
3 return dlocaltime(&clock);
4 }
5 struct tws { // from tws.h
6 int tw_sec; int tw_min; int tw_hour;
7 int tw_mday; int tw_mon; int tw_year; ... };

Listing 4: Case 4 source code.

1 void removeFromEdited(INT base , int size) {
2 typePage *p, *q = NULL;
3 for (p = edited; p; p ? (q = p, p = p->next) : (

q = NULL , p = edited)) {
4 if (base + size <= p->base) break;
5 if (base <= p->base) {
6 if (p->base + p->size <= base + size) {
7 if (q) {q->next = p->next};
8 else {edited = p->next};
9 freePage(p); p = q;

10 } else { p->size -= base+size - p->base;
11 memmove(p->vals , p->vals + base
12 + size - p->base , p->size);
13 p->base = base + size; }
14 } else if (p->base + p->size <= base + size) {
15 if (base < p->base + p->size)
16 {p->size -= p->base + p->size - base};
17 } else { q = newPage(base + size , p->base
18 + p->size - base - size);
19 memcpy(q->vals , p->vals + base
20 + size - p->base , q->size);
21 q->next = p->next; p->next = q;
22 p->size -= p->base + p->size - base;
23 break; }
24 }
25 updatelastEditedLoc ();
26 }

Listing 5: Case 5 source code.

1 int taskpanel_cancel_clicked_cbk(GtkButton *btn ,
2 gpointer data) {
3 log_fct_enter ();
4 ui_taskpanel_update(current_task);
5 log_fct_exit (); return FALSE; }

Listing 6: Case 6 source code.

20

	Introduction
	Multimodal Machine Learning
	Overview
	Combo
	Ensemble Encoding
	Contrastive Captioning

	Lord
	Masked Language Modeling
	Flexible Autoregression

	Evaluation
	Methodology
	Cross-Binary Setting
	Cross-Project Setting
	Strict Setting
	Ablation Study
	Combo
	Input Embeddings
	Lord

	Discussion
	Related Work
	Conclusion
	Automatic Function Names
	Case Study

