
Published in Proceedings of the IEEE Secure Development Conference, SecDev 2024, Pittsburgh, PA, USA, October 7 – 10, 2024.

GENIE: Guarding the npm Ecosystem with
Semantic Malware Detection

Matı́as F. Gobbi*
Bundeswehr University Munich, Germany

matias.gobbi@unibw.de

Johannes Kinder
LMU Munich, Germany

johannes.kinder@lmu.de

Abstract—Package managers and public repositories such as
npm streamline the distribution and maintenance of open source
code. At the same time, they have become attractive targets for
malicious actors to spread malware to many potential victims. In
malware campaigns, families of malicious JavaScript packages
exhibit common malicious behavior but differ in their names
and syntactic details. We propose to thwart malware campaigns
by developing semantic specifications to match similar malware
with a single behavioral signature. Specifically, we report on
our experience in using CodeQL to describe malicious behavior
in JavaScript code, which allows us to employ an existing and
mature static analysis framework as a robust building block. We
describe a methodology and tool set for developing queries for
newly reported and previously undetected malware, so that a
single report can be used to take down entire families of similar
malware. Applying our approach, we were able to discover 125
previously unreported malicious packages, which we reported
and had removed from npm, without producing a single false
alarm. As a result, we find that the upfront investment of
developing semantic signatures in comparison to automatically
learning classifiers pays off with the increased reliability of results
by saving on manual effort for validation and relabeling.

Index Terms—malware, npm, static analysis

I. INTRODUCTION

Package managers provide developers with an effective
mechanism for sharing, including, and updating code; yet,
they have profound security implications. For every package
dependency included in a project, trust is implicitly placed in
the registry to ensure authenticity and integrity of that package.
When malicious actors target package managers to include
malware in packages, this may directly affect developer ma-
chines or give rise to software supply chain attacks where
malicious code is included in downstream projects.

The package manager npm for Node.js is the largest public
database of JavaScript software and hosts more than two
million packages with more than fifty billion weekly down-
loads. Characteristic to npm is the high number of transitive
dependencies among packages [1], which is aggravated by
the reliance on packages that consist of only a few lines of
code [2]. This fragmentation of the codebase increases the
attack surface, as each of these packages with its developers
and delivery infrastructure has to be trusted [3]. Indeed, these
concerns are warranted by numerous attacks targeting npm.
For instance, a malicious dependency for attacking crypto-
currency wallets was added to the popular event-stream

*Also with LMU Munich, Germany.

package through social engineering [4]; an update to the
eslint-scope library contained a data exfiltration script after
maintainer credentials were compromised [5]; and the pure-
script installer was broken when some of its dependencies
were leveraged for a denial of service attack [6].

Many attacks do not involve novel techniques. As reported
by Ohm et al. [7], malicious code on public repositories
often appears in clusters of closely related packages that are
published in waves. For instance, the crossenv incident refers
to a collection of almost 40 packages posted under names
similar to existing packages (typosquatting) that performed
data exfiltration [8]. Sometimes, these campaigns are not
intrinsically malicious, but still violate the terms of service
of the respective registry: security researchers hunting after
bug bounties commonly publish probe packages under var-
ious names in an attempt to exploit dependency confusion
vulnerabilities, where an external malicious package is given
preference over an internal package of the same name [9].

Despite npm scanning packages in search of known ma-
licious content [10], the security of the ecosystem largely
relies on its community. Users submit reports of malware
via the npm website, which are then manually validated.
This means that the responsibility for ensuring the security
of the package ecosystem is a joint effort between registry
users and registry maintainers. This mechanism is limited in
what it can achieve; consequently, external security vendors
regularly report malware on npm [11, 12, 13]. As of today,
there is no clear solution to malware detection on open source
package managers. Several solutions have been proposed in the
literature, ranging from overall malware detection [14, 15, 16]
and capturing malicious patterns [17, 18, 19, 20, 21] to general
approaches for hardening the ecosystem [22, 23, 24, 25].

In this paper, we propose to tie the existing process of
reporting malicious packages on npm into a methodology
to greatly enhance its effectiveness. Using a single reported
package as a template, we develop a semantic signature
as a CodeQL query that will match the same malicious
behavior in other packages. Effectively, a single report can
thus take down an entire malware campaign. Such semantic
signatures have been proposed for malware detection in the
past [26, 27, 28, 29, 30, 31] but have not been widely adopted
due to brittle tool-chains and the complexity of specification
logics and formalisms [32]. However, we believe that static
analysis tools designed for robustness and ease of use in



1 import javascript
2

3 from ClientRequest request , string url
4 where url = request.getUrl().getStringValue()
5 select request , "Request to " + url

Listing 1. Example CodeQL query to detect requests.

writing queries, such as CodeQL, are well-equipped to be
used in this regard. While machine learning is widely seen
as the state of the art in malware detection [15], practical
deployments come with challenges of their own and require
large and diverse training sets [33, 34]. We argue that it is
time for a renaissance of semantic signatures, which promise
targeted and explainable detection of malware families from
just a single specimen with very low false positive rates. Using
our approach, we developed 12 queries from known malicious
packages and used these to detect 125 previously undetected
malicious packages on npm that were subsequently removed,
while not encountering a single false positive. We address
code obfuscation, a common impediment to static analysis,
by introducing queries aimed at detecting common obfuscation
styles in JavaScript. The main contributions of our work are
as follows:

• We demonstrate the feasibility of using CodeQL to de-
velop semantic signatures of malware that are effective
in practice. Using our queries, we discovered a total of
125 previously unreported malicious packages in npm
that were subsequently removed.

• We define queries for detecting obfuscated JavaScript
code, study its prevalence and usage on npm, and discuss
possible policies for dealing with obfuscation in the open
source ecosystem.

• We implemented our approach in GENIE (Guarding thE
Npm Ecosystem), which we make available together with
all CodeQL queries, the found malware samples, and all
data gathered during our analysis.12

II. STATIC ANALYSIS WITH CODEQL

CodeQL is a semantic code analysis framework designed
to find bugs and vulnerabilities in an application by running
queries against a database derived from the source code. The
database is created once, before applying any queries. The
analysis engine extracts the abstract syntax tree, control flow
graph, and data flow graph from source code and encodes it
into the database [35, 36].

Queries are written in the declarative, object-oriented logic
programming language QL, which is built on Datalog [35, 36].
A set of libraries provides convenience methods and language
support. For instance, there are pre-built queries implementing
control flow and data flow analyses, and specific support for
JavaScript. When applying queries, the produced results are
styled as alerts that point directly to code elements. There

1https://github.com/lmu-plai/GENIE
2https://doi.org/10.5281/zenodo.13143816

1 const trackingData = JSON.stringify({
2 hd: os.homedir(),
3 hn: os.hostname(),
4 un: os.userInfo().username ,
5 });
6

7 var postData = querystring.stringify({
8 msg: trackingData ,
9 });

10

11 var options = {
12 hostname : "<attacker -controlled -address >",
13 method : "POST",
14 ...
15 };
16

17 var req = https.request(options ,
18 (res) => {res.on("data", (d) => {});}
19 );
20

21 req.on("error", (e) => {});
22

23 req.write(postData);
24 req.end();

Listing 2. Simplified source code from malicious package.

are two types of queries: alert queries provide a source code
location of the match and a description of the issue, while
path queries display the complete flow of data between the
specified source and sink involved in the issue. Path queries
can be used for taint-style static information flow analysis,
which is particularly powerful for abstractly specifying mali-
cious behavior. CodeQL provides human-readable reports by
interpreting the query results based on metadata such as the
severity of each query.

Listing 1 shows an example query for detecting all requests,
using a SQL-like from.where.select clause. The variables
request and url range over all requests in the program and
all data flow nodes, respectively. Line 4 forces the second
variable to be the URL of the first variable, line 5 then
specifies the query results, i.e., tuples of source locations of
the requests and custom-built alert messages. Note that this
query detects requests made with any of CodeQL-supported
JavaScript library. This out-of-the-box library support is a key
practical advantage of CodeQL in comparison to alternatives
such as Joern [37] or Semgrep, where we would need to define
new patterns for each library.

III. THREAT MODEL

We consider an adversary that publishes malicious pack-
ages to the npm registry, in an attempt to perform attacks
when the package is downloaded and installed on a victim’s
machine, either as a package dependency or as a standalone
application. In this paper, we focus on an attacker interested
in reaching a wide range of victims by publishing many
packages with semantically similar malicious behavior. The
specific malicious goals are diverse and may include stealing
sensitive information from the victim and sending it back to
the attacker; tampering with, abusing, or destroying systems

2

https://github.com/lmu-plai/GENIE
https://doi.org/10.5281/zenodo.13143816


Category API Function Source Sink

Network http.get ×
request.write ×
dns.resolve × ×

CodeGen eval ×
vm.runInContext ×

File System fs.readFile ×
fs.writeFile ×
os.homedir ×

Process child process.exec ×
process.env ×

Table I. Examples of commonly seen sources and sinks in
malicious packages.

and computational resources; or remote backdoor access to the
victim’s machine for further attacks.

An attacker may apply one of two major strategies to
make their malicious code publicly available in the npm
registry. First, they can infect an existing package that has an
established direct user base or is part of the dependency tree
of other packages. This requires either social engineering or
other targeted attacks against existing developers and their cre-
dentials or the source code repository. Second, they can submit
a new package containing malicious code and try to trick
developers into using or depending on it through typosquatting
or constructing a trojan horse. Typosquatting refers to using
names similar to popular packages, hoping for developers to
mistype dependencies. Trojan horses are legitimate-looking
packages containing hidden malicious behavior. Such new
malicious packages are often replicated multiple times to
increase the chance of infection and will differ only slightly
in functionality [7, 38].

In this work, we focus on raising the bar for attackers using
the second strategy by detecting entire families of related mali-
cious code with a single semantic signature. While the queries
we develop will also match malicious code inserted into
an existing package, we exclude completely novel malicious
behavior, which is typically best dealt with using anomaly
detection [15, 39, 21]. In Listing 2 we show a simplified
version of an actual malicious sample uploaded to the registry,
which steals information when installed. The package gathers
operating system-related data (lines 1 to 5), makes a request
to an adversary-controlled remote address (lines 17 to 19), and
sends the data following some simple formatting (line 23).

IV. METHODOLOGY

We propose a new methodology to leverage CodeQL to
detect and take down families of malicious code on npm. From
malicious samples mined from npm, we define a semantic
signature in CodeQL, which is then applied to the entire
registry. The process requires a human in the loop with
expertise similar to that of a malware analyst in the traditional
process of generating static signatures or rules.

To support this methodology, we developed GENIE, a frame-
work that allows a developer to maintain a local snapshot of

Query Trigger Behavior #D #R

dependency-install Install Virus 1 0
dependency-save Install Virus 48 0
discord-injection Runtime Backdoor 1 0
discord-steal Runtime Stealing 1 0
discord-ware Install Sabotage 1 0
other-request Install Unknown 1 0
other-shell Runtime Unknown 1 0
theft-dns Install Stealing 15 91
theft-encoded Install Stealing 1 0
theft-environment Install Stealing 3 11
theft-os Install Stealing 1 17
theft-ping Install Stealing 1 6

Total 75 125

Table II. Taxonomy with the number of malware samples in
each class in the dataset of malware we detected as removed
(#D), and the number of malware samples in each class
detected by applying our queries to the registry (#R).

the package registry, detect when a malicious package is taken
down, create and query CodeQL databases, while enabling
efficient parallel processing and monitoring. A key benefit of
GENIE is that it enables a third party to do the analysis without
having to rely on npm to deploy the approach repository-wide.

In the following, we detail the four steps involved in
developing semantic signatures with GENIE (§IV-A–§IV-D).
Using the malware example from Listing 2 as inspiration,
we then develop a specific query capturing its behavior in
Listing 3 (§IV-E). Finally, we demonstrate how to address the
issue of code obfuscations (§IV-F).

A. Detecting Removed Packages

First, we detect packages that have been removed from the
registry, as this can be a sign for a malware report. When
a malicious package is reported to npm, the npm security
team publishes a security placeholder in its place, alerting
the community and stopping any further damage. We use this
fact to detect recent malware reports and employ them to find
further instances of ongoing malware campaigns. Although not
every removed package is malicious, and not every malicious
package belongs to a wider malware campaign with additional,
similar packages, we can show that this method is very
effective in practice. Central to this technique is monitoring
the package repository for removed packages.

We periodically mirror the repository in its entirety such that
we still have a copy of a malicious package after removal. If
the registry maintainer cooperates, this step could be simplified
and deployed at the site of the registry itself. Through GENIE,
we can perform this action while being external to npm.

B. Manual Inspection

Second, a manual source code analysis searches for common
patterns seen in malware [7, 14, 15], such as the requests
made, the spawning of processes, the interactions with the file
system, or the runtime generation and loading of code. This is

3



1 class TTConfiguration extends TaintTracking::Configuration {
2

3 predicate isSource(Node source) {
4 exists( SourceNode os
5 | os = moduleMember("os", ["hostname", "homedir", "userInfo"])
6 | os = source.(InvokeNode).getCalleeNode()
7 )
8 }
9 predicate isSink(Node sink) {

10 exists( ClientRequest client
11 | sink = client.getAMemberCall("write").getAnArgument()
12 )
13 }
14 predicate isAdditionalTaintStep(Node pred, Node succ) {
15 exists( PropWrite propWrite
16 | propWrite.writes(succ, _, pred)
17 )
18 }
19 }
20

21 from TTConfiguration cfg, PathNode source , PathNode sink
22 where cfg.hasFlowPath(source , sink)
23 select source , sink, "Detected suspicious flow of information"

Listing 3. Simplified query that matches the malicious package.

inherently a custom process, but it generally follows a common
strategy. Particularly, we aim to identify information flows
between meaningful sources and sinks in the source code.
Table I lists examples of sources and sinks frequently seen
in malicious packages. We refer the reader to Duan et al. [14]
for an extensive list of manually labeled APIs. Besides data
flows, installation routines and libraries required by a package
provide hints of where to look for malicious code. Following
the example of Listing 2, we can identify potential sources in
the calls to os.hostname(), os.homedir(), and os.userInfo(),
where specific operating system information is gathered, and
a potential sink that uploads this information to a web server
with a POST request in req.write(...).

This step also distinguishes malware that is out of scope
for source code analysis, e.g., due to the malicious behavior
residing in executable binaries, which should be addressed
through orthogonal detection methods.

C. Query Development

Third, having identified the malicious behavior in source
code, we define a corresponding CodeQL query. We start
by matching either the source or the sink of the flow with
CodeQL, and then connect the other end via the definition
of increasingly general predicates. Following the example in
Listing 2, besides having predicates for the identified sources
and sink, we need to make sure that the data flow connects both
nodes. We declare an additional predicate to propagate the taint
from the initial variable to the entire object in the argument
of the querystring.stringify(...) method call. As this has
the potential for generating false positives when applying the
query to the entire registry, in practice we have to refine the
query further. For instance, in this case we only query for
packages with detected flows from all three of the identified
sources to the sink (omitted from the example for brevity).

Having captured the malicious flow in the package, we
restrict the query to make it specific to the sample we are
working on. It has to be general enough to be able to find other
malware samples in the wild, but at the same time, needs to
be accurate enough to match only actually malicious packages
avoiding false alarms. For that, the query developer has to
capture, with the written query, the semantics of each relevant
step from the flow of data in the sample. A common pattern
seen in information stealing packages, is to encode the stolen
data before exfiltration; for instance, applying Buffer.from(..

.).toString("<encoding>"). A query developer should aim to
express this serialization step in the captured flow. In practice,
one can define a taint tracking configuration for the flow from
the source to this intermediate step and another one from the
intermediate step to the sink. While code like Listing 2 is
prohibited on npm, there is no clear policy regulating user
tracking, so we have to distinguish the type of information
being exfiltrated.

D. Application to Registry

Finally, after developing a query for a removed malicious
package, we apply it to the entire registry. For each matched
sample, the engine generates an alert message with the re-
quested information specified in the query together with the
location in the source code responsible for the match. After
manually validating the produced alerts in the package source
code correspond to actual malicious code, we report them to
the npm security team.

E. Example Query

Following our proposed methodology, we develop a query
specifically matching the behavior from the source code de-
scribed in Listing 2, to detect similar packages in the registry.
In Listing 3, we define a custom taint tracking configuration

4



(lines 1 to 19) for this attack pattern. Extending this class
enables us to capture even non-value-preserving data flows,
such as those passing through the querystring.stringify(.

..) method call. We declare the source node (lines 3 to 8)
of the configuration, which retrieves specific operative system
information via the calls to os.hostname(), os.homedir(), and
os.userInfo(). We declare the sink node (9 to 13) of the
configuration, which uploads this information to a web server
via passing it as an argument of a POST request, req.write(
...). We define an additional taint step (14 to 18) specifying
that storing information in an object property should propagate
the taint between nodes. Finally, with the from.where.select

clause (lines 21 to 23), we select all source-sink pairings
where there is a flow satisfying the conditions from the defined
configuration.

F. Detecting Code Obfuscation with CodeQL

Static analysis approaches to malware detection are known
for their limitations when faced with certain forms of code
obfuscation [32, 40]. Obfuscation transforms code into an
equivalent form that is harder to interpret for both human
analysts and program analysis tools. Ohm et al. [7] report that
almost half of malware they gathered in a study leveraged
some kind of obfuscation technique.

Due to the nature of its analysis, CodeQL is immune to
basic obfuscation techniques such as minification (removing
all unnecessary characters from a program’s source code) or
variable renaming (replacing identifiers with randomly gener-
ated names). Hence, our approach by design directly supports
the analysis of minified source files, which are relatively
common in deployed packages.

Examples of transformations that do thwart CodeQL are
control-flow flattening (having basic blocks inside a loop
where a dispatcher controls the program flow), encoding (con-
verting data to a different representation), string concealing
(computing strings literal values during runtime), variable
masking (hiding variables inside arrays), and dot-to-bracket
notation (performing property accesses using dynamic keys
instead of doing it with static keys).

A popular open-source obfuscator used by numerous npm
packages is the JavaScript Obfuscator.3 The tool provides a
large set of potent code transformations that can be applied
to a target program. Based on the chosen degree of protection
and the acceptable performance hit to the application, there
are multiple preset configurations. Even in its default settings,
the obfuscator performs transformations that prevent CodeQL
from completely modeling the dataflow. For example, the
statement console.log("Hello World!") can be obfuscated to
the equivalent code in Listing 4.

It is no surprise that certain obfuscating transformations
will thwart our approach to semantic malware detection, as
CodeQL would not be able to model the malicious information
flows specified. However, we argue that obfuscated code
should be deemed suspicious per se, and that we should detect

3https://github.com/javascript-obfuscator/javascript-obfuscator

1 var _0x3b8fdd=_0x599d;function _0x10ad(){var
↪→ _0x211b6a=['36 gLyCea ','539775 bVxIep ','
↪→ Hello\x20World!','14 SYFEtK ','5154824 AUhDey
↪→ ','2631912 ISGkUi ','253730 ViqKpg ','log','
↪→ 3500740 lAyOos ','1503258 dhExgS ','98412
↪→ VnHkaO ','6IUxeuq '];_0x10ad=function(){
↪→ return _0x211b6a;};return _0x10ad();}
↪→ function _0x599d(_0x102814 ,_0x3deeb4){var
↪→ _0x10ad9e=_0x10ad();return _0x599d=
↪→ function(_0x599d03 ,_0x431549){_0x599d03=
↪→ _0x599d03-0x1d7;var _0x34436c=_0x10ad9e[
↪→ _0x599d03];return _0x34436c;},_0x599d(
↪→ _0x102814 ,_0x3deeb4);}(function(_0x4c79a6 ,
↪→ _0x359279){var _0x4483ff=_0x599d ,_0x305664
↪→ =_0x4c79a6();while(!![]){try{var _0x267b65
↪→ =parseInt(_0x4483ff(0x1d8))/0x1+-parseInt(
↪→ _0x4483ff(0x1e2))/0x2*(parseInt(_0x4483ff(
↪→ 0x1e1))/0x3)+-parseInt(_0x4483ff(0x1dc))/0
↪→ x4+parseInt(_0x4483ff(0x1df))/0x5+parseInt
↪→ (_0x4483ff(0x1e0))/0x6*(-parseInt(
↪→ _0x4483ff(0x1da))/0x7)+parseInt(_0x4483ff(
↪→ 0x1db))/0x8+-parseInt(_0x4483ff(0x1d7))/0
↪→ x9*(parseInt(_0x4483ff(0x1dd))/0xa);if(
↪→ _0x267b65===_0x359279)break;else _0x305664
↪→ ['push'](_0x305664['shift ']());}catch(
↪→ _0x4d466d){_0x305664['push'](_0x305664['
↪→ shift ']());}}}(_0x10ad ,0x803fc),console[
↪→ _0x3b8fdd(0x1de)](_0x3b8fdd(0x1d9)));

Listing 4. Obfuscated source code produced by applying the
JavaScript Obfuscator in its default configuration.

obfuscation and warn about it. Furthermore, while CodeQL
is unable to precisely model information flow in obfuscated
code, it is perfectly capable of detecting whether a package
is obfuscated. To this end, we develop specialized CodeQL
queries to detect artifacts of obfuscated code, specifically those
generated by the obfuscations of the widely-used JavaScript
Obfuscator. As a result, we treat obfuscated source code as
instances of yet another malware family.

We consider the following obfuscation artifacts in
JavaScript source code: array refers to the presence of an array
of strings which contains literals and method names from the
original source code. parse encodes taking specifically gener-
ated strings from the array, and trying to parse an integer from
each one of them. rotate describes the shuffling of elements
of the array until a magic number is successfully computed.
From these patterns we developed queries against obfuscation
and applied them to the entire package repository. We discuss
the results in §V-D and the prevalence of obfuscated code on
npm in §V-E.

V. EVALUATION

We now evaluate GENIE and answer the following five
research questions:

• RQ1 Does our approach find malicious packages in
practice, and is the amount of false alarms manageable?

• RQ2 Does our method scale to the entire registry? How
resource-intensive is CodeQL?

• RQ3 How does our technique fare against a simpler
baseline approach?

5

https://github.com/javascript-obfuscator/javascript-obfuscator


• RQ4 Are we able to detect obfuscated code statically
using CodeQL?

• RQ5 How prevalent is obfuscated code in npm?
To answer these questions, we conduct a case study to find

malware following our methodology (§V-A). While doing so,
we measure the performance of the CodeQL engine to create
and query databases of JavaScript packages (§V-B). Further-
more, we implemented a baseline approach using syntactic
signatures for comparison (§V-C). Lastly, we evaluate the
effectiveness of our obfuscation detection queries (§V-D) and
assess the prevalence of obfuscated code in the registry (§V-E).

A. RQ1: Case Study

We downloaded the latest version of more than 1.8 million
packages from the registry from 23 to 25 May 2022. On 27
June 2022, one month after the initial download, we searched
for security placeholders in the package repository and, when
found, retrieved the copy we had stored locally to build a
dataset of recently removed packages from npm. We collected
a total of 91 recently removed packages, which we later
transformed into a dataset of 75 malicious packages after
an in-depth analysis and classification of each one. Of the
excluded samples, 6 contained malicious shell scripts instead
of JavaScript, and the remaining 10 we did not find to be
malware (e.g., they were non-functional or empty). In Table II,
we show characteristics of each documented malicious cluster.
These packages were grouped by manually analyzing their
source code and following the classification by Ohm et al.
[7]. From the numbers in the dataset, we can see that at least
three separate malware campaigns seem to have been running
at the time of our analysis. Almost all samples execute their
malicious behavior during installation, and the most common
objective from these attacks appears to be data exfiltration.

According to our proposed methodology, after identify-
ing twelve different malicious clusters, we defined CodeQL
queries to specifically match the samples contained in each
one of them. For their development, and further application,
we used the 2.9.2 release of the CodeQL command-line
toolchain along with the corresponding compatible libraries.
The purpose of the queries can be summarized as follows:
dependency-* queries match packages including malware as
dependency of the main application, while performing other
malicious actions during installation (e.g., stealing the ma-
chine’s npm cache or making requests to unknown addresses).
With CodeQL, we parse the installation scripts of a package
to detect these suspicious behaviors. Both clusters try to
propagate in the ecosystem with probe samples. discord-*
queries match a variety of malware related to the Discord
messaging platform. These range from stealing billing infor-
mation or private tokens to attaching a malicious payload
into the application’s source code. With CodeQL, we detect
suspicious file system operations (e.g., reading or writing
Discord related files) and flows from sensible data to network
requests. theft-* queries match packages that steal personally
identifiable information (PII) from the victim and send it
to an attacker-controlled domain. The sources are mostly

10
1 24 36 10

2
10

3

Space for database (in MBs)

10
2

10
3

10
4

10
5

10
6

C
ou

nt

Distribution of space for CodeQL's databases

90th percentile
95th percentile

Figure 1. Space for CodeQL’s databases.

package-related metadata, operating system information and
environment variables. The sinks are HTTPS requests, DNS
queries, and even ping commands. Some of these clusters
target dependency confusion vulnerabilities and display a
security disclaimer in their source code (yet still exfiltrating
PII). other-* queries match packages that attempt to perform
suspicious communication with a domain that was no longer
available at the time of our analysis. Our CodeQL queries
match a request made by a deprecated library and a request
made through a spawned shell.

The analysis of the source code and the following devel-
opment of a CodeQL query to match a given cluster took on
average between 30 to 45 minutes. This process was shorter
when the source code was straightforward, the malicious
behavior could be succinctly described with a custom dataflow
configuration, or the malware performed unusual actions.
When the samples had complex source code or implemented
novel attacks, it took longer. Generally, the query development
takes the majority of the analyst time for a given cluster.

We applied GENIE with the finalized queries to our snapshot
of the npm registry to find malicious packages similar to
those collected in our dataset of removed packages. Table II
shows the results we obtained. In total, we found 125 available
malicious packages in npm, which we individually confirmed
as malicious, with no false positives. After reporting the
packages, npm replaced all but one of them with a security
placeholder for violating the terms of service. One package
implementing user tracking remains on npm but is marked
as deprecated and now maintained by npm. As a result, we
were able to identify samples from four malware campaigns,
with all of them performing data exfiltration (see column #R in
Table II). Note that the remaining queries did not find any other
samples outside of the collected dataset. This could mean that
the removed packages were not part of an attack campaign,
but one-off malware packages.

Note that the absence of false alarms is a consequence of
the targeted approach we follow with the semantic malware
signatures in CodeQL. Clearly we expect to eventually observe

6



10
1

10
2 300

create T/O
900

query T/O
Time to perform CodeQL's command (in seconds)

0

200000

400000

600000

800000

1000000

1200000
C

ou
nt

Distribution of time to create/query CodeQL's databases

create command
median for create command
mean for create command
query command
median for query command
mean for query command

Figure 2. Time for CodeQL commands.

false positives, e.g., with borderline behavior; but by design
our method is focused on having high precision (reducing
the time spent manually reviewing its results), possibly at
the expense of lower recall (potentially missing malicious
packages in the registry). In summary, we can answer RQ1
affirmatively. Our approach does indeed detect malware in
the npm registry. Furthermore, our first application shows
promising results, considering the lack of false alarms.

B. RQ2: Performance of CodeQL

Taking into account that we want to monitor the registry
following our methodology, the performance of CodeQL when
analyzing a JavaScript project is vital. We evaluate the com-
putational feasibility of our proposed approach by measuring
the size of the analyzed packages and their corresponding
databases, and computing the time required to create each
database and to apply all of our queries to it. The case
study was conducted on five Debian servers with two AMD
EPYC 7763 64-Core processors and 1 TB of RAM each. Our
snapshot of the registry consists of, in total, more than 1.8
million packages.

First, we study the relationship between the size of an
npm package and its corresponding CodeQL database. We
computed the Pearson correlation coefficient between both
variables and obtained a value of 0.64. This means that the
size of the source code in a package loosely determines the
size of the produced database. In Figure 1 we show the size
distribution of CodeQL databases. The smallest databases need
18 MB of space, which is also the value of the median,
where the mean is close to 22 MB. The biggest database,
corresponding to the package wyraz requires almost 1 GB.
In total, CodeQL needs close to 41 TB of space to store the
databases of all the packages in the snapshot. Our results show
that, even for small packages, a CodeQL database needs a
considerable, but rather stable, amount of space for storage.

Second, we study the distribution of the time required
to apply both CodeQL operations, creating and querying a
database, shown in Figure 2. Initially, we built the databases

for all the packages in our dataset. Setting a timeout of
300 seconds for the database create command, 95% of
the databases where created in less than 22 seconds, with
0.3% timing out. From all the packages in the snapshot, 1%
failed during the creation of their database for containing
syntax errors. In our setup, the creation of databases took
approximately 47 hours of wall-clock time.

Then, all of our twelve developed CodeQL queries were
applied concurrently on each database. Setting a timeout of
900 seconds for the database query command, 95% of
the databases were queried in less than 23 seconds, with
only the package @accordproject/ergo-compiler timing
out. From all the databases, less than 0.01% ran out of memory
during querying. In our setup, the querying of databases took
approximately 123 hours of wall-clock time. Note that the
entire process is highly parallelizable, since both commands
can be applied to multiple packages (or databases) at the same
time. In our case study, we had 32 and 16 processes running
simultaneously per server for the creation and querying of the
databases, respectively. The command database create built
a database every 0.09 seconds while database query applied
all queries to a database every 0.24 seconds, both on average.

We can give a generally positive answer to RQ2, as our case
study was successfully deployed. The resource requirements to
deploy CodeQL at registry scale are considerable, especially
given the number of package submissions to npm. A possible
avenue for future work would be to investigate incremental
analysis for large packages to reduce the cost of reanalyzing
large code bases.

C. RQ3: Comparison against Baseline

Considering our method requires human intervention to
develop signatures, we would like to contrast it against more
automated approaches. We chose to compare against a simple
baseline using file hashes to detect exact copies of malware.
Making use of our collected dataset of recently removed mali-
cious packages, we measured the effectiveness of a technique
capable of searching for exact copies of malware found in the
registry, and assessed our approach against it.

The general idea of the baseline technique is to compute
a single hash for a given package and see if it matches with
the hash from a recently removed malicious package. Since
the package.json file of a given npm package contains its
metadata (like its unique package name), and there was no
non-JavaScript-based malware in our dataset, we decided to
only include .js and .ts files when calculating the hash of
a given package. We computed the hash for each package in
the collected dataset, and then searched for matches in our
snapshot of the registry.

Clearly, this type of approach has the advantages of being
simple to deploy, extremely fast (an average of 0.05 seconds
per package), and space efficient (5 GB for all hashes vs.
50 TB for the CodeQL databases). However, the baseline
approach did not find a single additional match for any mali-
cious package, which suggests that either no duplicates were
ever uploaded, or, more likely, that npm already implements a

7



Query #npm #sample P R F1 TP FP TN FN

array-parse&rotate 376 163 1.00 0.77 0.87 163 0 20 47
array-parse 412 183 0.93 0.81 0.87 172 11 9 38
array-rotate 459 192 0.98 0.90 0.94 190 2 18 20
array 568 230 0.91 1.00 0.95 210 20 0 0

Table III. Metrics calculated over a sample of matched packages for our characterization of obfuscation.

form of de-duplication to protect against malware and spam.
With respect to RQ3, we can conclude that GENIE clearly
outperforms a simple baseline approach and is capable of
finding malware that evaded the security mechanisms set up
in the registry.

D. RQ4: Detecting Obfuscation

Table III shows the results of applying our queries for
detecting obfuscation to the entire package repository. We
evaluate four different configurations of queries over obfus-
cation artifacts. Going from the least general query, which
captures every described artifact, to the most general query,
which detects heavy use of array values to compute keys for
property accesses, we can partially order the sets of matched
packages by inclusion. Any package flagged by a given query
is also going to be flagged by all queries that have strictly
fewer constraints.

To measure the performance of our queries, we manually
analyzed the matched packages to verify that they were indeed
obfuscated. Given the number of packages, we reviewed
a sample for computing the metrics. Considering that the
population size of matched packages was 568, we took a
random sample of 230 to guarantee a confidence level of
95% that the real precision of the queries was within ±5%
of the measured value. The metrics computed over the sample
are displayed in Table III. It is worth noting that we only
consider negatives from the selected sample and not from the
entire registry, meaning that the true negatives (TN), the false
negatives (FN), and the derived metrics, Recall (R) and F1,
just provide an intuition for the actual values. For deploying
the obfuscation queries without introducing false positives, the
first query specifying all artifacts is most suited. In contrast,
the overall best F1 performance is achieved by the most
general query. On RQ4, we can conclude that it is indeed
feasible to detect common code obfuscations, circumventing
one of the major weaknesses of a static analysis approach.

E. RQ5: Use of Obfuscation

We use our queries to detect obfuscated packages on npm to
measure their popularity. To this end, we used an open-source
utility to get download counts in npm4, from the start of June
2022 to the end of May 2023, for all packages in our snapshot
and focused on those matched by our most precise query.

The downloads of obfuscated packages only account for
less than 0.0001% of the total number of downloads in the

4https://github.com/kgryte/npm-package-download-counts

entire registry. More than 60% (236) of obfuscated packages
had, on average, less than 1 daily download in the last year,
while close to 85% (313) had less than 5 daily downloads.
When manually studying some of the obfuscated packages, we
noticed that most of them were undocumented basic utilities
developed by individual maintainers, which used obfuscation
in an attempt to protect their code from being reused without
their permission.

Nevertheless, there are also some popular obfuscated pack-
ages in the registry. About 5% (20) had more than 25 daily
downloads on average in the last year, and close to 1%
(6) had more than 100 daily downloads. Some of the most
popular obfuscated packages, including lightrun, discord-
dashboard, or those from the @salesforce/ scope, use
obfuscation to protect a paid product or service associated with
them. Even considering these exceptions, the reasoning behind
the use of these techniques is unclear for most of the samples
found in the registry. Packages without documentation nor
repository, like adzone, or listing a repository which does not
actually host its source code, like raganork-bot, end up being
indistinguishable from obfuscated malware such as test-pls,
which steals sensitive information when used.

Currently, there is no policy constraining the upload of
obfuscated packages in the registry. Although an obfuscated
package is not intrinsically malicious, neither humans nor
static analysis-based tools can understand and vet its source
code, effectively disabling basic control mechanisms of the
open source community. Hence, such packages become par-
ticularly dangerous to rely on. Even though there are obfus-
cated packages on npm, most of them tend to be unpopular.
We recommend that npm restrict developers from uploading
packages with obfuscated source code, following policies such
as the one of the Chrome Web Store [41]. Leveraging CodeQL
as a detector of these techniques, it should be possible to
automatically stop the upload of new obscured packages to
the registry. Although banning obfuscation entirely would
be preferable, it would be possible to allow exceptions for
legitimate use cases with alternative closed-source vetting and
certification, with appropriately posted warning messages.

VI. DISCUSSION AND LIMITATIONS

We now report the lessons learned from our work and
identify some conceptual and technical limitations.

Our static analysis technique leverages recently discovered
malicious packages to develop highly specific CodeQL queries
designed to match similar malware targeting package reposi-
tories, like npm. An application of the approach produced no

8

https://github.com/kgryte/npm-package-download-counts


false alarms, while detecting a total of 125 malicious packages.
We find that the upfront investment of developing semantic
signatures in comparison to automatically learning classifiers
pays off with the increased reliability of results by saving
on manual effort for validation and relabeling. In addition,
a single report can be used to take down entire families of
similar malware where the developed queries can be used to
stop further similar attacks. Despite this, the approach has
some limitations that we discuss in the following.

A. Analysis Scope

The development of CodeQL queries is a manual process,
which requires a level of expertise from the query developer
similar of a malware analyst in the traditional process of
generating static signatures or rules. Furthermore, we are not
able to detect completely novel supply chain attacks, due to
the fact that we require the detection and removal of an initial
malicious package to use as template for the generation of a
semantic signature. We trade recall for precision to minimize
the time spent on manual vetting of false positives. Thus,
GENIE can be seen as a first line of defense for package
repositories rather than a comprehensive protection mechanism
that detects all malware.

B. Static Analysis

Given our technique is based on CodeQL, we are tied to the
capabilities of its underlying analysis engine. Meaning that a
limitation in CodeQL could lead to false negatives, as GENIE
might not be able to detect certain types of malicious behavior.
However, the tool is actively developed and maintained, so we
expect that the prospect of our approach will improve as the
tool evolves. As CodeQL is a static analysis framework, our
proposed technique relies entirely on static analysis, inheriting
all of its limitations. The dynamic nature of JavaScript is a
particularly well-known challenge for static analysis, and there
are unavoidable issues arising from runtime code generation
and reflection, such as the infamous eval, which are also
leveraged by multi-stage payload malware. Regardless of the
programming language, the use of obfuscation techniques in
source code, like string encryption or control flow flattening,
hinders this analysis in particular, although we describe how
to detect and prevent such obfuscations in §IV-F.

C. Languages and Dependencies

We could in principle analyze code in all languages also
supported by CodeQL. In packages where the malicious code
is written in an unsupported language, such as a shell script,
we are unable to model its behavior in a query to match
it. A technical limitation of CodeQL is that when building
a database from a given codebase, only code from a single
language is considered; one exception is the combination
of HTML and JavaScript, where CodeQL supports cross-
language data flows due to this particular combination’s im-
portance. Related to this, we only consider the source code of
the main package when building the corresponding database,
which means that we are so far unable to model malware

where the relevant behavior is split across packages. While
this restriction is in principle easy to lift, including the source
code of all dependencies in full will incur a significant cost.
Summarization techniques could help to improve the analysis
for such cases [42].

VII. RELATED WORK

In this section, we discuss related work from three research
areas: open source ecosystem studies, software supply chain
security, and CodeQL and similar analysis frameworks. While
there is a wide variety of work that focuses in the npm registry,
to the best of our knowledge, we are the first to leverage
CodeQL as a malware detection tool for it.

A. Analysis

Studies of open source ecosystems raise awareness of ex-
ploitable vulnerabilities in package repositories, while pro-
viding insight into the taxonomy of malicious packages.
Zimmermann et al. [3] perform a large-scale study where
they discuss several mitigation strategies to deal with security
threats present in the npm ecosystem. Ohm et al. [7] present
a dataset of malicious packages used in real-world attacks on
open source software supply chains, which were distributed
in popular package repositories. Pinckney et al. [43] analyze
how developers use semantic versioning in npm to study po-
tential associated security vulnerabilities. Abdalkareem et al.
[2] conducted a survey, followed by an empirical study of
Node.js applications, to examine the reasons and drawbacks
of using trivial packages. Zahan et al. [44] propose weak link
signals for the npm registry, in an attempt to help developers
make more educated decisions when including a package
dependency into their applications.

B. Security

Duan et al. [14] present a large scale vetting pipeline
for malware detection in registries, which leverages program
analysis techniques such as metadata, static, and dynamic
analysis. Given that they do not claim to be the state of the
art, but rather aim to reveal the severity of the security related
problems from registries, they do not discuss the performance
of the combined pipeline.

Sejfia and Schäfer [15] develop AMALFI, a machine-
learning based approach for automatic malware detection in
npm, where the feature set includes information about the
capabilities used by a package and how these change between
versions. The dataset used to train the models was the archive
of malicious package versions provided by npm, extended
with the corresponding benign versions of each package.
After observing high initial false positive rates, the authors
retrained with manually validated and re-labeled results. So,
while training the classifier inherently does not require hu-
man intervention, the machine learning-based approach also
requires the human in the loop for validation and re-labeling.
In contrast, GENIE requires a higher upfront cost to develop
queries, but compensates the effort with keeping false positives
low. According to communication with the authors, AMALFI

9



is currently deployed by npm, where the original dataset used
for training covered the archive of malicious package versions
provided by the registry maintainers. Unfortunately, it is not
possible to compare GENIE to AMALFI, since the source code
to apply AMALFI on a different dataset, or even just replicate
their results, has not been released. The only anecdotal point
of comparison is a single package, bipiy74902-wx1, which
was flagged by GENIE in our experiments. According to the
data released with AMALFI, this package was analyzed by their
models during evaluation but not detected as malicious.

Ohm et al. [16] leverage a dataset of clustered malware used
in software supply chain attacks to automatically generate syn-
tactic signatures for successive detection of similar malicious
packages in npm. Considering the high false positive rate ob-
tained, the tool is geared towards aiding analysts by notifying
them of suspicious packages that require further assessment
while providing hints about possible similar attacks. Ohm et al.
[45] evaluate several classifiers on 15k packages from npm but
report high false positive rates, which matches our discussion
above. Apart from overall malware detection in registries,
there is also security relevant work with a narrower scope.
In the literature, there are solutions for capturing potentially
malicious updates [19, 20, 39, 21], detecting typosquatting
attacks [17, 18], and hardening the ecosystem [22, 23, 24, 25].

C. CodeQL

Our proposed approach consists in leveraging this semantic
code analysis engine to find malicious packages in npm,
whereas it is mostly used for vulnerability detection. Bandara
et al. [46] define an automatic technique which allows to
analyze the vulnerability management in GitHub repositories.
Shcherbakov et al. [47] implement a framework to identify
prototype pollution vulnerabilities which could lead to remote
code execution attacks in Node.js applications. Chow et al.
[48] combine static analysis, specifically taint analysis, and
machine learning to detect potentially vulnerable data flows
in JavaScript projects. Froh et al. [21] leverage differential
static analysis to detect anomalous changes of behavior in
package updates. Despite the approach showing promising
results, it is designed to aid developers in vetting their package
dependencies, instead of being an overall malware detector.
Ideally, GENIE would be combined with such tools to harden
the open source software supply chain.

There is also work that, despite not using CodeQL, presents
solutions which could be adapted to our problem. Kang et al.
[49] design a signature-based static analysis for detecting
vulnerabilities that are semantically similar to previously seen
vulnerable code. Feng et al. [50] present an approach for
identifying malicious apps in Android, incorporating a high-
level specification Datalog-based language which allows them
to describe semantic characteristics of known malware fam-
ilies, and a static analysis for checking if an application
matches a developed signature. Feng et al. [51] improve on
the above-mentioned approach by inferring the semantic mal-
ware signatures automatically, besides using an approximation
matching algorithm. Staicu et al. [42] propose a technique,

based on dynamic analysis, for automatically extracting taint
specifications of JavaScript libraries, to be later utilized in
static analysis. CodeQL has been evaluated and compared
against other static analysis tools, in terms of their effective-
ness to detect vulnerabilities for JavaScript [52], C [53], and
binaries [54].

VIII. CONCLUSION AND FUTURE WORK

We have presented GENIE, an approach built around the
CodeQL static code analysis framework to mitigate malware
campaigns threatening the open source software supply chain.
By monitoring the registry for recently discovered malicious
packages, we designed effective CodeQL queries to match
similar malware on the repository.

In our study, we developed 12 queries that allowed us to
successfully scan the entire npm repository and flag a total
of 125 previously undetected malicious packages from four
different campaigns, while producing no false alarms. We also
successfully used CodeQL to describe obfuscations, allowing
us to flag obfuscated packages trying to evade static analysis.
Overall, our evaluation shows that our method is effective and
can improve the security of a real-world package repository.

A possible avenue for future work would be to automate
the development of CodeQL queries, by leveraging machine
learning techniques or by adapting existing approaches for
mining malware specifications [55, 56, 57]. Another inter-
esting direction would be to extend our framework to work
with other package repositories, such as PyPi and RubyGems,
where the same methodology could be applied to detect
malware.

REFERENCES

[1] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Struc-
ture and evolution of package dependency networks,” in
Proc. of the 14th Int. Conf. Mining Software Repositories
MSR. IEEE Computer Society, 2017.

[2] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and
E. Shihab, “Why do developers use trivial packages? an
empirical case study on npm,” in Proc. 11th Joint Meet-
ing on Foundations of Software Engineering ESEC/FSE.
ACM, 2017.

[3] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel,
“Small world with high risks: A study of security threats
in the npm ecosystem,” in Proc. 28th USENIX Security
Symposium. USENIX Association, 2019.

[4] A. Sparling, “Github issue 116: I don’t know what to
say.” 2018, accessed: 2024-02-10. [Online]. Available:
https://github.com/dominictarr/event-stream/issues/116

[5] A. Mihajlov, “Github issue 39: Virus in eslint-
scope?” 2018, accessed: 2024-02-10. [Online]. Available:
https://github.com/eslint/eslint-scope/issues/39

[6] H. Garrood, “Malicious code in the purescript
npm installer,” 2019, accessed: 2024-02-10. [Online].
Available: https://harry.garrood.me/blog/malicious-code-
in-purescript-npm-installer/

10

https://github.com/dominictarr/event-stream/issues/116
https://github.com/eslint/eslint-scope/issues/39
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/
https://harry.garrood.me/blog/malicious-code-in-purescript-npm-installer/


[7] M. Ohm, H. Plate, A. Sykosch, and M. Meier, “Backstab-
ber’s knife collection: A review of open source software
supply chain attacks,” in 17th Int. Conf. Detection of
Intrusions and Malware and Vulnerability Assessment
(DIMVA). Springer, 2020.

[8] C. Silverio, “’crossenv’ malware on the npm
registry,” 2017, accessed: 2024-02-10. [Online].
Available: https://blog.npmjs.org/post/163723642530/
crossenv-malware-on-the-npm-registry

[9] A. Birsan, “Dependency confusion: How I
hacked into Apple, Microsoft and dozens of
other companies,” 2021, accessed: 2024-02-10.
[Online]. Available: https://medium.com/@alex.birsan/
dependency-confusion-4a5d60fec610

[10] M. Hanley, “Github’s commitment to npm
ecosystem security,” 2021, accessed: 2024-02-10.
[Online]. Available: https://github.blog/2021-11-15-
githubs-commitment-to-npm-ecosystem-security/

[11] A. Polkovnychenko and S. Menashe, “Malware
civil war - malicious npm packages targeting
malware authors,” 2022, accessed: 2024-02-10. [Online].
Available: https://jfrog.com/blog/malware-civil-war-
malicious-npm-packages-targeting-malware-authors/

[12] K. Efimov, “Snyk finds 200+ malicious npm
packages, including cobalt strike dependency confusion
attacks,” 2022, accessed: 2024-02-10. [Online].
Available: https://snyk.io/blog/snyk-200-malicious-npm-
packages-cobalt-strike-dependency-confusion-attacks/

[13] A. Sharma, “86 malicious npm pack-
ages named after popular nodejs func-
tions,” 2022, accessed: 2024-02-10. [Online].
Available: https://blog.sonatype.com/86-malicious-npm-
packages-named-after-popular-nodejs-function-names

[14] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltafor-
maggio, and W. Lee, “Towards measuring supply chain
attacks on package managers for interpreted languages,”
in 28th Annu. Network and Distributed System Security
Symposium (NDSS). The Internet Society, 2021.

[15] A. Sejfia and M. Schäfer, “Practical automated detection
of malicious npm packages,” in 44th Int. Conf. Software
Engineering (ICSE). ACM, 2022.

[16] M. Ohm, L. Kempf, F. Boes, and M. Meier, “If you’ve
seen one, you’ve seen them all: Leveraging AST clus-
tering using MCL to mimic expertise to detect software
supply chain attacks,” CoRR, vol. abs/2011.02235, 2020.

[17] M. Taylor, R. K. Vaidya, D. Davidson, L. D. Carli,
and V. Rastogi, “Spellbound: Defending against package
typosquatting,” CoRR, vol. abs/2003.03471, 2020.

[18] D.-L. Vu, I. Pashchenko, F. Massacci, H. Plate, and
A. Sabetta, “Typosquatting and combosquatting attacks
on the python ecosystem,” in IEEE European Symp.
Security and Privacy Workshops (EuroS&P). IEEE,
2020.

[19] S. Scalco, R. Paramitha, D.-L. Vu, and F. Massacci,
“On the feasibility of detecting injections in malicious
npm packages,” in Proc. 17th Int. Conf. Availability,

Reliability and Security. ACM, 2022.
[20] K. A. Garrett, G. Ferreira, L. Jia, J. Sunshine, and

C. Kästner, “Detecting suspicious package updates,” in
Proc. 41st Int. Conf. Software Engineering: New Ideas
and Emerging Results (ICSE-NIER). IEEE / ACM,
2019.

[21] F. Froh, M. Gobbi, and J. Kinder, “Differential static
analysis for detecting malicious updates to open source
packages,” in Proc. ACM Workshop on Software Sup-
ply Chain Offensive Research and Ecosystem Defenses
(SCORED). ACM, 2023.

[22] I. Koishybayev and A. Kapravelos, “Mininode: Reducing
the attack surface of node.js applications,” in 23rd Int.
Symp. Research in Attacks, Intrusions, and Defenses
(RAID). USENIX Association, 2020.

[23] N. Vasilakis, A. Benetopoulos, S. Handa, A. Schoen,
J. Shen, and M. C. Rinard, “Supply-chain vulnerability
elimination via active learning and regeneration,” in Proc.
ACM SIGSAC Conf. Computer and Communications
Security (CCS). ACM, 2021.

[24] G. Ferreira, L. Jia, J. Sunshine, and C. Kästner, “Contain-
ing malicious package updates in npm with a lightweight
permission system,” in 43rd Int. Conf. Software Engi-
neering (ICSE). IEEE, 2021.

[25] E. Wyss, A. Wittman, D. Davidson, and L. D. Carli,
“Wolf at the door: Preventing install-time attacks in npm
with latch,” in ASIA CCS ’22: ACM Asia Conference on
Computer and Communications Security. ACM, 2022.

[26] M. Christodorescu and S. Jha, “Static analysis of executa-
bles to detect malicious patterns,” in USENIX Security
Symp. USENIX, 2003.

[27] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song,
and R. E. Bryant, “Semantics-aware malware detection,”
in IEEE Symp. Security and Privacy (S&P). IEEE
Computer Society, 2005.

[28] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith,
“Detecting malicious code by model checking,” in 2nd
Int. Conf. Detection of Intrusions and Malware & Vul-
nerability Assessment (DIMVA), ser. LNCS, vol. 3548.
Springer, 2005.

[29] M. Dalla Preda, M. Christodorescu, S. Jha, and S. K.
Debray, “A semantics-based approach to malware detec-
tion,” in 34th ACM SIGPLAN-SIGACT Symp. Principles
of Programming Languages (POPL). ACM, 2007.

[30] A. Holzer, J. Kinder, and H. Veith, “Using verification
technology to specify and detect malware,” in Proc.
11th Int. Conf. Computer Aided Systems Theory (EU-
ROCAST), ser. LNCS, vol. 4739. Springer, 2007, pp.
497–504.

[31] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith,
“Proactive detection of computer worms using model
checking,” IEEE Trans. Dependable Sec. Comput., vol. 7,
no. 4, 2010.

[32] A. Moser, C. Kruegel, and E. Kirda, “Limits of static
analysis for malware detection,” in 23rd Annu. Computer
Security Applications Conference (ACSAC). IEEE Com-

11

https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://blog.npmjs.org/post/163723642530/crossenv-malware-on-the-npm-registry
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://github.blog/2021-11-15-githubs-commitment-to-npm-ecosystem-security/
https://jfrog.com/blog/malware-civil-war-malicious-npm-packages-targeting-malware-authors/
https://jfrog.com/blog/malware-civil-war-malicious-npm-packages-targeting-malware-authors/
https://snyk.io/blog/snyk-200-malicious-npm-packages-cobalt-strike-dependency-confusion-attacks/
https://snyk.io/blog/snyk-200-malicious-npm-packages-cobalt-strike-dependency-confusion-attacks/
https://blog.sonatype.com/86-malicious-npm-packages-named-after-popular-nodejs-function-names
https://blog.sonatype.com/86-malicious-npm-packages-named-after-popular-nodejs-function-names


puter Society, 2007.
[33] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and

L. Cavallaro, “TESSERACT: Eliminating experimental
bias in malware classification across space and time,”
in Proc. 28th USENIX Security Symposium. USENIX
Association, 2019, pp. 729–746.

[34] L. Cavallaro, J. Kinder, F. Pendlebury, and F. Pierazzi,
“Are machine learning models for malware detection
ready for prime time?” IEEE Secur. Priv., vol. 21,
no. 2, pp. 53–56, 2023. [Online]. Available: https:
//doi.org/10.1109/MSEC.2023.3236543

[35] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov,
T. Ekman, N. Ongkingco, D. Sereni, and J. Tibble,
“Keynote address: .ql for source code analysis,” in 7th
IEEE Int. Workshop on Source Code Analysis and Ma-
nipulation SCAM. IEEE Computer Society, 2007.

[36] P. Avgustinov, O. de Moor, M. P. Jones, and M. Schäfer,
“QL: object-oriented queries on relational data,” in 30th
European Conf. Object-Oriented Programming ECOOP.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

[37] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Model-
ing and discovering vulnerabilities with code property
graphs,” in Proc. IEEE Symp. Security and Privacy
(S&P). IEEE Computer Society, 2014, pp. 590–604.

[38] X. Zhou, Y. Zhang, W. Niu, J. Liu, H. Wang, and Q. Li,
“OSS malicious package analysis in the wild,” CoRR,
vol. abs/2404.04991, 2024.

[39] D. Gonzalez, T. Zimmermann, P. Godefroid, and
M. Schäfer, “Anomalicious: Automated detection of
anomalous and potentially malicious commits on github,”
in 43rd Int. Conf. Software Engineering ICSE. IEEE,
2021.

[40] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merz-
dovnik, and E. Weippl, “Protecting software through
obfuscation: Can it keep pace with progress in code
analysis?” ACM Computing Surveys, vol. 49, no. 1, 2016.

[41] J. Wagner, “Trustworthy chrome extensions,
by default,” 2018, accessed: 2024-02-10. [On-
line]. Available: https://blog.chromium.org/2018/10/
trustworthy-chrome-extensions-by-default.html

[42] C. Staicu, M. T. Torp, M. Schäfer, A. Møller, and
M. Pradel, “Extracting taint specifications for JavaScript
libraries,” in ICSE ’20: 42nd Int. Conf. Software Engi-
neering. ACM, 2020.

[43] D. Pinckney, F. Cassano, A. Guha, and J. Bell, “A
large scale analysis of semantic versioning in NPM,” in
20th IEEE/ACM Int. Conf. Mining Software Repositories
MSR. IEEE, 2023.

[44] N. Zahan, T. Zimmermann, P. Godefroid, B. Murphy,
C. S. Maddila, and L. A. Williams, “What are weak links
in the npm supply chain?” in 44th Int. Conf. Software
Engineering (ICSE). IEEE, 2022.

[45] M. Ohm, F. Boes, C. Bungartz, and M. Meier, “On
the feasibility of supervised machine learning for the
detection of malicious software packages,” in 17th Int.

Conf. Availability, Reliability and Security ARES. ACM,
2022.

[46] V. Bandara, T. Rathnayake, N. Weerasekara, C. Elvit-
igala, K. Thilakarathna, P. Wijesekera, and C. Keppi-
tiyagama, “Fix that fix commit: A real-world remedia-
tion analysis of JavaScript projects,” in 20th IEEE Int.
Working Conf. Source Code Analysis and Manipulation
SCAM. IEEE, 2020.

[47] M. Shcherbakov, M. Balliu, and C. Staicu, “Silent spring:
Prototype pollution leads to remote code execution in
node.js,” in USENIX Security Symp., 2023.

[48] Y. W. Chow, M. Schäfer, and M. Pradel, “Beware of the
unexpected: Bimodal taint analysis,” in Proc. of the 32nd
ACM SIGSOFT Int. Symp. Software Testing and Analysis
ISSTA. ACM, 2023.

[49] W. Kang, B. Son, and K. Heo, “TRACER: signature-
based static analysis for detecting recurring vulnerabili-
ties,” in Proc. of the 2022 ACM SIGSAC Conf. Computer
and Communications Security CCS. ACM, 2022.

[50] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:
semantics-based detection of android malware through
static analysis,” in Proc. 22nd ACM SIGSOFT Int. Symp.
Foundations of Software Engineering (FSE). ACM,
2014.

[51] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand,
“Automated synthesis of semantic malware signatures
using maximum satisfiability,” in 24th Annu. Network
and Distributed System Security Symp. NDSS. The
Internet Society, 2017.

[52] T. Brito, M. Ferreira, M. Monteiro, P. Lopes, M. Bar-
ros, J. F. Santos, and N. Santos, “Study of JavaScript
static analysis tools for vulnerability detection in node.js
packages,” CoRR, vol. abs/2301.05097, 2023.

[53] S. Lipp, S. Banescu, and A. Pretschner, “An empirical
study on the effectiveness of static C code analyzers
for vulnerability detection,” in 31st ACM SIGSOFT Int.
Symp. Software Testing and Analysis ISSTA. ACM,
2022.

[54] A. Mantovani, L. Compagna, Y. Shoshitaishvili, and
D. Balzarotti, “The convergence of source code and
binary vulnerability discovery - A case study,” in Proc.
’22 ACM Asia Conf. on Computer and Communications
Security. ACM, 2022.

[55] H. D. Macedo and T. Touili, “Mining malware speci-
fications through static reachability analysis,” in Proc.
18th European Symp. Research in Computer Security
(ESORICS). Springer, 2013.

[56] M. Christodorescu, S. Jha, and C. Kruegel, “Mining
specifications of malicious behavior,” in Proc. 1st Annu.
India Software Engineering Conference (ISEC). ACM,
2008.

[57] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and
X. Yan, “Synthesizing near-optimal malware specifica-
tions from suspicious behaviors,” in 31st IEEE Symp.
Security and Privacy (S&P). IEEE Computer Society,
2010.

12

https://doi.org/10.1109/MSEC.2023.3236543
https://doi.org/10.1109/MSEC.2023.3236543
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html

	Introduction
	Static Analysis with CodeQL
	Threat Model
	Methodology
	Detecting Removed Packages
	Manual Inspection
	Query Development
	Application to Registry
	Example Query
	Detecting Code Obfuscation with CodeQL

	Evaluation
	RQ1: Case Study
	RQ2: Performance of CodeQL
	RQ3: Comparison against Baseline
	RQ4: Detecting Obfuscation
	RQ5: Use of Obfuscation

	Discussion and Limitations
	Analysis Scope
	Static Analysis
	Languages and Dependencies

	Related Work
	Analysis
	Security
	CodeQL

	Conclusion and Future Work

